executor.py 45.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
H
Huihuang Zheng 已提交
25
from .framework import Program, default_main_program, Variable, convert_np_dtype_to_dtype_
26
from . import core
27 28
from . import compiler
from .. import compat as cpt
29
from .trainer_factory import TrainerFactory
30
from .trainer_factory import FetchHandlerMonitor
31

T
Tink_Y 已提交
32
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
33

Y
Yu Yang 已提交
34
g_scope = core.Scope()
F
flame 已提交
35 36
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
37

Y
Yu Yang 已提交
38

Y
Yang Yu 已提交
39
def global_scope():
Y
yuyang18 已提交
40 41 42 43
    """
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

44 45 46 47 48 49 50 51 52
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          numpy.array(fluid.global_scope().find_var("data").get_tensor())

Y
yuyang18 已提交
53 54 55
    Returns:
        Scope: The global/default scope instance.
    """
Y
Yang Yu 已提交
56 57 58
    return g_scope


59
def _switch_scope(scope):
Y
Yang Yu 已提交
60 61 62 63 64 65
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
66
@signature_safe_contextmanager
Y
Yang Yu 已提交
67
def scope_guard(scope):
Y
yuyang18 已提交
68
    """
69 70 71 72 73 74 75 76 77 78 79 80
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
81

82 83
    Returns:
        None
L
lujun 已提交
84

Y
yuyang18 已提交
85
    Examples:
86 87
        .. code-block:: python

88
            import paddle.fluid as fluid
L
lujun 已提交
89
            import numpy
Y
yuyang18 已提交
90

L
lujun 已提交
91 92 93 94
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                 fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
95
    """
L
lujun 已提交
96

97
    ex = _switch_scope(scope)
Y
Yang Yu 已提交
98
    yield
99
    _switch_scope(ex)
Y
Yang Yu 已提交
100 101


D
dzhwinter 已提交
102
def as_numpy(tensor):
103 104 105
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
106

107
    Examples:
108 109 110 111 112 113 114 115 116 117
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
118 119 120 121 122 123 124

    Args:
       tensor(Variable): a instance of Tensor

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
125 126
    if isinstance(tensor, core.LoDTensorArray):
        return [as_numpy(t) for t in tensor]
D
dzhwinter 已提交
127 128 129 130
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
131
    if len(lod) > 0:
D
dzhwinter 已提交
132
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
133 134 135
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
136 137 138 139
    if tensor._is_initialized():
        return np.array(tensor)
    else:
        return None
D
dzhwinter 已提交
140 141


H
Huihuang Zheng 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
      
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
    
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
    2. Each non-negative number of the two dimentions are same.
    3. For negative number or 'None' in a dimention, it means unknown so it
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


def check_feed_shape_type(var, feed):
    """
    Returns True if the variable doesn't require feed check or it is compatible
    with the shape and have same dtype as the feeded value.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
    2. Each non-negative number of the two dimentions are same.
    3. For negative number or 'None' in a dimention, it means unknown so it
       is compatible with any number.
    
    Args:
        var (Variable): the Variable object
        feed (LoDTensor): the feeded value, which must be a LoDTensor
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
        if not dimension_is_compatible_with(feed.shape(), var.shape):
            raise ValueError('Cannot feed value of shape %r for Variable %r, '
                             'which has shape %r' %
                             (feed.shape, var.name, var.shape))
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
            raise ValueError('Cannot feed value of type %r for Variable %r, '
                             'which has type %r' %
                             (feed._dtype(), var.name, var.dtype))
    return True


227 228 229 230 231 232 233 234 235 236 237 238
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
239 240
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
241 242 243
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
244
        A boolean value that indicates whether a block has feed operators
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
267

268 269 270 271 272 273 274 275 276
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
277 278 279
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
280

X
xuwei06 已提交
281 282 283
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
305
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
306
    """
C
chengduoZH 已提交
307 308 309
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
310
    Args:
311 312 313 314
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
315 316 317 318
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
319 320 321 322 323 324
    Returns:
       LodTensor|numpy.ndarray
    """
    assert isinstance(name, str)
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
325
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
326

Y
Yibing Liu 已提交
327
    var = scope.find_var(name)
328 329 330 331
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
332 333 334 335 336 337
    tensor = var.get_tensor()
    if return_numpy:
        tensor = as_numpy(tensor)
    return tensor


X
polish  
Xin Pan 已提交
338 339 340 341 342 343 344 345 346
def _to_name_str(var):
    if isinstance(var, Variable):
        return var.desc.name()
    elif isinstance(var, str):
        return var
    elif isinstance(var, six.string_types):
        return str(var)
    else:
        raise TypeError(str(var) + " should be Variable or str")
Q
qiaolongfei 已提交
347 348


349 350 351 352
def _get_strong_program_cache_key(program, feed, fetch_list):
    return str(id(program)) + _get_program_cache_key(feed, fetch_list)


X
polish  
Xin Pan 已提交
353 354 355
def _get_program_cache_key(feed, fetch_list):
    feed_var_names = list(feed.keys())
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
356 357 358 359

    return str(feed_var_names + fetch_var_names)


W
Wu Yi 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
def _as_lodtensor(data, place):
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
            data(numpy.ndarray): a instance of array

        Returns:
            LoDTensor
        """
    if isinstance(data, list):
        raise RuntimeError("Some of your feed data hold LoD information. \
                They can not be completely cast from a list of Python \
                ndarray to LoDTensor. Please convert data to LoDTensor \
                directly before feeding the data.\
                ")
    # single tensor case
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
class FetchHandler(object):
    def __init__(self, fetch_target_names, period_secs=60, return_np=True):
        self.fetch_target_names = fetch_target_names
        self.period_secs = period_secs
        self.return_np = return_np

    def handler(self, fetch_target_vars):
        return

    @staticmethod
    def help():
        print("""
class FetchHandlerExamlpe(FetchHandler):
    def handler(self, fetch_target_vars):
        b_auc = fetch_target_vars[0]
        g_auc = fetch_target_vars[1]
                        
        print("b_auc: {}, g_auc: {} at time: {}".format(b_auc, g_auc, time.ctime()))
""")


Y
Yu Yang 已提交
412
class Executor(object):
413
    """
414 415 416 417 418 419 420 421 422 423 424
    An Executor in Python, supports single/multiple-GPU running,
    and single/multiple-CPU running. Python executor takes a program,
    adds feed operators and fetch operators to this program according
    to feed map and fetch_list. Feed map provides input data for the
    program. fetch_list provides the variables(or names) that user wants
    to get after program runs. Note: the executor will run all operators
    in the program but not only the operators dependent by the fetch_list.
    It stores the global variables into the global scope, and creates a
    local scope for the temporary variables. The contents in local scope
    may be discarded after every minibatch forward/backward finished.
    But the global scope variables will be persistent through different runs.
S
Fix doc  
sneaxiy 已提交
425

426
    Examples:
S
Fix doc  
sneaxiy 已提交
427 428
        .. code-block:: python

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
          import paddle.fluid as fluid
          import paddle.fluid.compiler as compiler
          import numpy
          import os

          use_cuda = True
          place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

          # Run the startup program once and only once.
          # Not need to optimize/compile the startup program.
          startup_program.random_seed=1
          exe.run(startup_program)

          # Run the main program directly without compile.
          x = numpy.random.random(size=(10, 1)).astype('float32')
          loss_data, = exe.run(train_program,
                               feed={"X": x},
                               fetch_list=[loss.name])

          # Or, compiled the program and run. See `CompiledProgram`
          # for more detail.
          # NOTE: If you use CPU to run the program, you need
          # to specify the CPU_NUM, otherwise, fluid will use
          # all the number of the logic core as the CPU_NUM,
          # in that case, the batch size of the input should be
          # greater than CPU_NUM, if not, the process will be
          # failed by an exception.
          if not use_cuda:
              os.environ['CPU_NUM'] = str(2)

          compiled_prog = compiler.CompiledProgram(
              train_program).with_data_parallel(
              loss_name=loss.name)
          loss_data, = exe.run(compiled_prog,
                               feed={"X": x},
                               fetch_list=[loss.name])
X
add doc  
Xin Pan 已提交
474

475
    Args:
476 477
        place(fluid.CPUPlace|fluid.CUDAPlace(n)): indicate the executor run on which device.

478 479
    """

D
dzhwinter 已提交
480 481
    def __init__(self, place):
        self.place = place
Q
qiaolongfei 已提交
482
        self.program_caches = dict()
483
        self.ctx_caches = dict()
484 485
        self.scope_caches = dict()
        self.var_caches = dict()
486 487 488
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
489
        self._closed = False
D
dzhwinter 已提交
490

491 492 493 494 495 496
    def _get_var_cache(self, program_cache_key):
        return self.var_caches.get(program_cache_key, None)

    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

497 498 499
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
500 501 502 503 504 505
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

506 507 508
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

509 510 511 512 513 514
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

    def _add_var_cache(self, var_cache_key, var):
        self.var_caches[var_cache_key] = var

Q
Qiao Longfei 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                out = global_block.var(name)
W
Wu Yi 已提交
541
                global_block._prepend_op(
Q
Qiao Longfei 已提交
542 543 544 545 546 547 548 549
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i})

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
550 551 552
                assert isinstance(var, Variable) or isinstance(
                    var, six.string_types), (
                        "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
Q
Qiao Longfei 已提交
553 554 555 556 557 558 559 560 561 562
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
563 564
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
565 566 567 568
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
                if not isinstance(cur_feed, core.LoDTensor):
W
Wu Yi 已提交
569
                    cur_feed = _as_lodtensor(cur_feed, self.place)
H
Huihuang Zheng 已提交
570 571
                var = global_block.var(feed_target_name)
                check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
572 573 574 575 576 577 578 579
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
580
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
581 582 583
        ]
        return outs

S
Fix doc  
sneaxiy 已提交
584 585 586 587 588 589
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
590 591 592 593
    def close(self):
        """
        Close this executor.

X
fix  
Xin Pan 已提交
594
        You can no longer use this executor after calling this method.
595 596 597 598 599 600 601 602 603 604 605 606
        For the distributed training, this method would free the resource
        on PServers related to the current Trainer.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              cpu = fluid.CPUPlace()
              exe = fluid.Executor(cpu)
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
607
        """
608 609
        if not self._closed:
            self._default_executor.close()
Y
Yancey1989 已提交
610
            self._closed = True
Y
Yancey1989 已提交
611

X
fix  
Xin Pan 已提交
612
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
X
polish  
Xin Pan 已提交
613
                      return_numpy):
614
        exe = program._executor
H
Huihuang Zheng 已提交
615 616 617 618 619
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
620 621 622 623 624 625
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
                if not isinstance(feed_tensor, core.LoDTensor):
                    feed_tensor = core.LoDTensor()
626
                    # always set to CPU place, since the tensor need to be split
627
                    # it is fast in CPU
628 629 630
                    assert isinstance( feed[feed_name], np.ndarray ), \
                        "The input({}) should be numpy.array, but not {}.".format(
                        feed_name, type(feed[feed_name]))
631
                    feed_tensor.set(feed[feed_name], core.CPUPlace())
H
Huihuang Zheng 已提交
632 633 634
                if need_check_feed:
                    var = global_block.var(feed_name)
                    check_feed_shape_type(var, feed_tensor)
635 636
                feed_tensor_dict[feed_name] = feed_tensor

637
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
638
        elif isinstance(feed, list) or isinstance(feed, tuple):
X
fix  
Xin Pan 已提交
639
            if len(feed) != len(program._places):
640 641 642 643 644 645 646 647 648 649 650 651 652 653
                raise ValueError(
                    "Feed a list of tensor, the list should be the same size as places"
                )

            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
                    if not isinstance(tensor, core.LoDTensor):
                        tmp = core.LoDTensor()
654 655 656
                        assert isinstance(each[feed_name], np.ndarray), \
                            "The input({}) should be numpy.array, but not {}.".format(
                            feed_name, type(each[feed_name]))
X
fix  
Xin Pan 已提交
657
                        tmp.set(tensor, program._places[i])
658
                        tensor = tmp
H
Huihuang Zheng 已提交
659 660 661
                    if need_check_feed:
                        var = global_block.var(feed_name)
                        check_feed_shape_type(var, tensor)
662 663
                    res_dict[feed_name] = tensor
                res.append(res_dict)
664
            exe.feed_tensors_into_local_scopes(res)
665

X
polish  
Xin Pan 已提交
666
        fetch_var_names = list(map(_to_name_str, fetch_list))
667
        tensors = exe.run(fetch_var_names)._move_to_list()
668
        return as_numpy(tensors) if return_numpy else tensors
669

Y
Yu Yang 已提交
670
    def run(self,
Y
Yu Yang 已提交
671
            program=None,
672 673
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
674
            feed_var_name='feed',
Y
Yu Yang 已提交
675
            fetch_var_name='fetch',
D
dzhwinter 已提交
676
            scope=None,
677 678
            return_numpy=True,
            use_program_cache=False):
679
        """
680 681 682 683
        Run program by this Executor. Feed data by feed map, fetch result by
        fetch_list. Python executor takes a program, add feed operators and
        fetch operators to this program according to feed map and fetch_list.
        Feed map provides input data for the program. fetch_list provides
684 685
        the variables(or names) that user want to get after program run.

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
        Note: the executor will run all operators in the program but not
        only the operators dependent by the fetch_list.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              import numpy

              # First create the Executor.
              place = fluid.CPUPlace() # fluid.CUDAPlace(0)
              exe = fluid.Executor(place)

              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              adam = fluid.optimizer.Adam()
              adam.minimize(loss)

              # Run the startup program once and only once.
              exe.run(fluid.default_startup_program())

              x = numpy.random.random(size=(10, 1)).astype('float32')
              outs = exe.run(feed={'X': x},
                             fetch_list=[loss.name])
Q
qiaolongfei 已提交
711

712
        Args:
X
add doc  
Xin Pan 已提交
713
            program(Program|CompiledProgram): the program that need to run,
X
fix  
Xin Pan 已提交
714
                if not provided, then default_main_program (not compiled) will be used.
X
add doc  
Xin Pan 已提交
715
            feed(dict): feed variable map, e.g. {"image": ImageData, "label": LabelData}
Z
Zeng Jinle 已提交
716 717 718 719 720 721 722 723
            fetch_list(list): a list of variable or variable names that user 
                wants to get, this method will return them according to this list.
            feed_var_name(str): the name for the input variable of 
                feed Operator.
            fetch_var_name(str): the name for the output variable of 
                fetch Operator.
            scope(Scope): the scope used to run this program, you can switch 
                it to different scope. default is global_scope
724
            return_numpy(bool): if convert the fetched tensor to numpy
Z
Zeng Jinle 已提交
725 726 727 728 729 730
            use_program_cache(bool): whether to use the cached program 
                settings across batches. Setting it be true would be faster 
                only when (1) the program is not compiled with data parallel, 
                and (2) program, feed variable names and fetch_list variable 
                names do not changed compared to the last step. 
                
731 732 733
        Returns:

            list(numpy.array): fetch result according to fetch_list.
734
        """
C
chengduo 已提交
735 736 737 738 739 740 741 742 743 744 745 746
        try:
            return self._run_impl(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)
        except Exception as e:
            if not isinstance(e, core.EOFException):
747 748
                warnings.warn(
                    "The following exception is not an EOF exception.")
749
            six.reraise(*sys.exc_info())
C
chengduo 已提交
750 751 752

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
                  fetch_var_name, scope, return_numpy, use_program_cache):
Y
Yancey1989 已提交
753 754 755
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
756
        use_default_main_program = program is None
757 758
        if program is None:
            program = default_main_program()
C
chengduo 已提交
759
        if isinstance(program, Program) and \
760
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
761 762 763 764
            error_info = "The current program is empty."
            if use_default_main_program:
                error_info += " Maybe you should pass the Program or the CompiledProgram manually."
            warnings.warn(error_info)
765

766 767
        if scope is None:
            scope = global_scope()
768 769 770 771 772 773 774 775 776

        if fetch_list is not None:
            if isinstance(fetch_list, Variable) or isinstance(fetch_list, str):
                fetch_list = [fetch_list]
            assert isinstance(fetch_list, tuple) or isinstance(fetch_list, list), \
                "Currently , The fetch_list type only should be list or tuple, \n"\
                "but the input type is {}. For more information please refer to \n"\
                "the executor.run(...).".format(type(fetch_list))
        else:
X
polish  
Xin Pan 已提交
777
            fetch_list = []
778

X
polish  
Xin Pan 已提交
779
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
780

X
polish  
Xin Pan 已提交
781
        # For backward compatibility, run directly.
782
        if not compiled:
C
chengduo 已提交
783
            return self._run_program(
784 785 786 787 788 789 790 791 792 793
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)

        program._compile(scope, self.place)
C
chengduo 已提交
794 795 796
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
797
            return self._run_parallel(
X
fix  
Xin Pan 已提交
798
                program,
799 800 801
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
X
polish  
Xin Pan 已提交
802
                fetch_var_name=fetch_var_name,
803 804
                return_numpy=return_numpy)

C
chengduo 已提交
805
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
806
                     fetch_var_name, scope, return_numpy, use_program_cache):
807

808 809
        if feed is None:
            feed = {}
S
sneaxiy 已提交
810 811 812 813
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
814
        if not isinstance(feed, dict):
D
dzhwinter 已提交
815 816 817
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
818

819
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
820
        if not isinstance(program, Program):
D
dzhwinter 已提交
821 822 823
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
824

825
        if use_program_cache:
826
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
827
            cached_program = self._get_program_cache(cache_key)
828
            cached_ctx = self._get_ctx_cache(cache_key)
829 830
            cached_scope = self._get_scope_cache(cache_key)
            cached_var = self._get_var_cache(cache_key)
Q
Qiao Longfei 已提交
831 832 833 834 835 836 837 838
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
839
                fetch_list_str = list(map(_to_name_str, fetch_list))
840
                cached_ctx = self._default_executor.prepare_ctx_cache(
841 842 843 844 845 846 847 848 849
                    cached_program.desc, 0, fetch_list_str, False)
                cached_var = self._default_executor.create_variables(
                    cached_program.desc, scope, 0)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
850
                self._add_ctx_cache(cache_key, cached_ctx)
851 852
                self._add_var_cache(cache_key, cached_var)
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
853
            program = cached_program
854
            ctx = cached_ctx
855 856
            scope = cached_scope
            var = cached_var
857
        else:
Q
Qiao Longfei 已提交
858 859 860 861 862 863 864 865
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
866
        if not use_program_cache:
C
chengduo 已提交
867 868
            self._default_executor.run(program.desc, scope, 0, True, True,
                                       fetch_var_name)
869
        else:
C
chengduo 已提交
870 871
            self._default_executor.run_cached_prepared_ctx(ctx, scope, False,
                                                           False, False)
872 873
        arr = scope.find_var(fetch_var_name).get_lod_tensor_array()
        tensors = arr._move_to_list()
D
dzhwinter 已提交
874
        if return_numpy:
875 876 877
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
878

X
Xin Pan 已提交
879 880
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
881

882 883
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
H
hutuxian 已提交
884
            fout.write(str(trainer))
885 886 887 888
        if program._fleet_opt:
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

905 906 907 908 909 910 911 912 913
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
D
dongdaxiang 已提交
914 915 916 917
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
918 919 920
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
921 922
        compiled = isinstance(program, compiler.CompiledProgram)
        if not compiled:
H
hutuxian 已提交
923 924 925 926 927 928
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
929
            trainer._set_program(program)
930
        else:
H
hutuxian 已提交
931 932 933 934 935 936
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
937
            trainer._set_program(program.program)
H
hutuxian 已提交
938

939
        if thread <= 0:
D
dongdaxiang 已提交
940 941
            if dataset.thread_num <= 0:
                raise RuntimeError(
942 943
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
944
            else:
945
                trainer._set_thread(dataset.thread_num)
946
        else:
947
            trainer._set_thread(thread)
H
hutuxian 已提交
948

949 950
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
951
        return scope, trainer
952

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
    def _run_from_dataset(self,
                          program=None,
                          dataset=None,
                          scope=None,
                          thread=0,
                          is_infer=False,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
        if dataset is None:
            raise RuntimeError("dataset is need and should be initialized")

        if program._pipeline_opt:
            thread = self._adjust_pipeline_resource(program._pipeline_opt,
                                                    dataset, thread)

        dataset._prepare_to_run()

        if fetch_handler is not None:
            fetch_instance = fetch_handler
        elif fetch_handler is None and fetch_list is not None:

            class FH(FetchHandler):
                def handler(self, fetch_target_vars):
                    for i in range(len(fetch_target_vars)):
                        print("{}: \n {}\n".format(fetch_info[i],
                                                   fetch_target_vars[i]))

            fetch_target_names = [var.name for var in fetch_list]
            fetch_instance = FH(fetch_target_names,
                                period_secs=print_period,
                                return_np=False)
        else:
            fetch_instance = FetchHandler([])

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug)

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, dataset.dataset)

        scope0 = trainer_instance.get_worker_scope(0)

        fetch_monitor = FetchHandlerMonitor(scope0, fetch_instance)
        fetch_monitor.start()
        self._default_executor.run_from_dataset(trainer_instance)
        fetch_monitor.stop()
        dataset._finish_to_run()
        return None

1014 1015 1016 1017 1018
    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
1019 1020 1021
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1022 1023
                           print_period=100,
                           fetch_handler=None):
1024 1025 1026 1027 1028 1029
        """
        The document of infer_from_dataset is almost the same as
        train_from_dataset, except that in distributed training,
        push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-thread
        very easily.
1030

1031 1032 1033 1034 1035
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
               if not provided, then default_main_program (not compiled) will be used.
            dataset(paddle.fluid.Dataset): dataset created outside this function,
               a user should provide a well-defined dataset before calling this function.
1036
               Please check the document of Dataset if needed. default is None
1037 1038 1039
            scope(Scope): the scope used to run this program, you can switch it to different scope
               for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. The actual number
1040 1041
               of thread will be min(Dataset.thread_num, thread) if thread > 0, default is 0
            debug(bool): whether a user wants to run infer_from_dataset, default is False
1042
            fetch_list(Variable List): fetch variable list, each variable
1043 1044 1045
                                       will be printed during training, default is None
            fetch_info(String List): print information for each variable, default is None
            print_period(int): the number of mini-batches for each print, default is 100
1046
            fetch_handler(FetchHandler): a user define class for fetch output.
1047

1048 1049 1050 1051
        Returns:
            None

        Examples:
1052 1053

            .. code-block:: python
1054

1055
                import paddle.fluid as fluid
1056 1057

                place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
1058
                exe = fluid.Executor(place)
1059 1060
                x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
                y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
1061 1062
                dataset = fluid.DatasetFactory().create_dataset()
                dataset.set_use_var([x, y])
1063 1064
                dataset.set_thread(1)
                filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
1065 1066 1067 1068
                dataset.set_filelist(filelist)
                exe.run(fluid.default_startup_program())
                exe.infer_from_dataset(program=fluid.default_main_program(),
                                       dataset=dataset)        
1069

1070
        """
1071 1072 1073
        return self._run_from_dataset(program, dataset, scope, thread, True,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)
1074 1075 1076 1077 1078 1079 1080 1081 1082

    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1083 1084
                           print_period=100,
                           fetch_handler=None):
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
        
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
               if not provided, then default_main_program (not compiled) will be used.
            dataset(paddle.fluid.Dataset): dataset created outside this function,
               a user should provide a well-defined dataset before calling this function.
               Please check the document of Dataset if needed.
            scope(Scope): the scope used to run this program, you can switch it to different scope
               for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. The actual number
               of thread will be min(Dataset.thread_num, thread)
            debug(bool): whether a user wants to run train_from_dataset 
            fetch_list(Variable List): fetch variable list, each variable
                                       will be printed during training
            fetch_info(String List): print information for each variable
            print_period(int): the number of mini-batches for each print
1111
            fetch_handler(FetchHandler): a user define class for fetch output.
1112 1113 1114

        Returns:
            None
1115
        
1116
        Examples:
1117
        
1118 1119 1120
            .. code-block:: python

              import paddle.fluid as fluid
1121 1122

              place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
1123
              exe = fluid.Executor(place)
1124 1125
              x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
              y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
1126 1127
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([x, y])
1128 1129
              dataset.set_thread(1)
              filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
1130 1131 1132 1133
              dataset.set_filelist(filelist)
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(program=fluid.default_main_program(),
                                     dataset=dataset)
1134 1135

        """
1136 1137 1138
        return self._run_from_dataset(program, dataset, scope, thread, False,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)