sequence_pool_op.cc 6.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_pool_op.h"
16
#include <memory>
17
#include <string>
18 19 20 21

namespace paddle {
namespace operators {

22
class SequencePoolOp : public framework::OperatorWithKernel {
23 24 25
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
27
    PADDLE_ENFORCE(ctx->HasInput("X"),
28
                   "Input(X) of SequencePoolOp should not be null.");
Q
Qiao Longfei 已提交
29
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
30
                   "Output(Out) of SequencePoolOp should not be null.");
Q
Qiao Longfei 已提交
31
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
32 33 34 35 36
    if (ctx->Attrs().Get<std::string>("pooltype") == "MAX") {
      PADDLE_ENFORCE(ctx->HasOutput("MaxIndex"),
                     "Output(MaxIndex) of SequencePoolOp should not be null.");
      ctx->SetOutputDim("MaxIndex", ctx->GetInputDim("X"));
    }
37 38 39
  }
};

40
class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
41
 public:
Y
Yu Yang 已提交
42
  void Make() override {
43
    AddInput("X", "(LoDTensor) The variable-length input of SequencePoolOp");
L
Luo Tao 已提交
44
    AddOutput("Out",
45
              "(Tensor) The output of SequencePoolOp does not contain LoD "
L
Luo Tao 已提交
46
              "infomation.");
47
    AddOutput("MaxIndex",
D
dangqingqing 已提交
48 49
              "(Tensor<int>) This tensor is used for the sequence max-pooling "
              "to record the max indexes.")
50
        .AsIntermediate();
51 52 53 54
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
D
dzhwinter 已提交
55 56
    AddAttr<std::string>(
        "pooltype",
L
Luo Tao 已提交
57
        "(string, default 'AVERAGE') the pooling pooltype of SequencePoolOp.")
58 59
        .SetDefault("AVERAGE")
        .InEnum({"AVERAGE", "SUM", "SQRT", "LAST", "FIRST", "MAX"});
60 61 62
    AddAttr<float>("pad_value",
                   "(float, default 0.0) The value to pad for empty sequence.")
        .SetDefault(0.0);
63
    AddComment(R"DOC(
64
Sequence Pool Operator.
65

66 67
The SequencePoolOp pools features of all time-steps of each instance.
It supports six pooling types:
68 69 70
1. AVERAGE: $$Out[i] = \frac{\sum_i X_i}{N}$$
2. SUM:     $$Out[i] = \sum_jX_{ij}$$
3. SQRT:    $$Out[i] = \frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}$$
71 72
4. LAST:    Out[i] = last instance in i-th sequence X[i]
5. FIRST:   Out[i] = first instance in i-th sequence X[i]
73
6. MAX:     $$Out[i] = max(X_i)$$
74

75 76
and for the empty sequence Out[i] = attr(pad_value).

77 78 79
The following example explains how this works:
For a mini-batch of 3 variable-length sentences,
containing 2, 3, and 2 time-steps:
Q
Qiao Longfei 已提交
80

81 82 83
Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
Besides, for the sake of simplicity, we assume M=1 and N=1,
and the value of X = [[1, 3], [2, 4, 6], [5, 1]].
L
Luo Tao 已提交
84

85 86
Thus, Out is a [3,1,1] Tensor without LoD infomation.
And for different pooltype, the value of Out is as follows:
L
Luo Tao 已提交
87

88 89 90
- AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
- SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
- SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
91
           6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
92 93 94 95
- MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
- LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
- FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

96 97 98 99
    )DOC");
  }
};

100
class SequencePoolGradOp : public framework::OperatorWithKernel {
101 102 103
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

104
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
105 106 107 108 109
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Gradient of Out should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("X"), "The input X should not be null.");
    auto og_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    auto x_dims = ctx->GetInputDim("X");
110 111
    PADDLE_ENFORCE_EQ(og_dims.size(), x_dims.size(),
                      "The rank of output grad must equal to Input(X).");
112
    for (int64_t i = 1; i < og_dims.size(); ++i) {
113 114
      PADDLE_ENFORCE_EQ(og_dims[i], x_dims[i], "The dimension mismatch.");
    }
115 116 117

    ctx->ShareDim("X", /*->*/ framework::GradVarName("X"));
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
118
  }
119 120

 protected:
121
  framework::OpKernelType GetExpectedKernelType(
122
      const framework::ExecutionContext& ctx) const override {
123 124 125
    return framework::OpKernelType(
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type(),
        ctx.device_context());
126
  }
127 128
};

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
class SequencePoolGradOpMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op_desc_ptr = new framework::OpDesc();
    op_desc_ptr->SetType("sequence_pool_grad");
    op_desc_ptr->SetInput("X", Input("X"));
    if (boost::get<std::string>(GetAttr("pooltype")) == "MAX") {
      op_desc_ptr->SetInput("MaxIndex", Output("MaxIndex"));
    }
    op_desc_ptr->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op_desc_ptr->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op_desc_ptr->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(op_desc_ptr);
  }
};

148 149 150
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
    SequencePoolGradOpNoNeedBufferVarsInference, "X");

151 152 153 154
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
155 156
REGISTER_OPERATOR(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker,
                  ops::SequencePoolGradOpMaker);
157 158
REGISTER_OPERATOR(sequence_pool_grad, ops::SequencePoolGradOp,
                  ops::SequencePoolGradOpNoNeedBufferVarsInference);
159
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
160 161
    sequence_pool,
    ops::SequencePoolKernel<paddle::platform::CPUDeviceContext, float>);
162
REGISTER_OP_CPU_KERNEL(
163
    sequence_pool_grad,
Q
QI JUN 已提交
164
    ops::SequencePoolGradKernel<paddle::platform::CPUDeviceContext, float>);