mean_op.cc 3.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
liaogang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/mean_op.h"
S
sneaxiy 已提交
16
#include <memory>
C
chengduo 已提交
17
#include <string>
S
sneaxiy 已提交
18 19
#include <unordered_map>

L
liaogang 已提交
20 21 22
namespace paddle {
namespace operators {

D
dongzhihong 已提交
23
class MeanOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
24 25 26
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

27
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
28 29 30 31 32
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of MeanOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of MeanOp should not be null.");
    ctx->SetOutputDim("Out", {1});
L
liaogang 已提交
33 34 35
  }
};

D
dongzhihong 已提交
36
class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
37
 public:
Y
Yu Yang 已提交
38
  void Make() override {
T
tensor-tang 已提交
39
    AddInput("X", "(Tensor) The input of mean op");
40
    AddOutput("Out", "(Tensor) The output of mean op");
K
kexinzhao 已提交
41
    AddComment(R"DOC(
T
tensor-tang 已提交
42
Mean Operator calculates the mean of all elements in X.
K
kexinzhao 已提交
43

44
)DOC");
L
liaogang 已提交
45 46 47
  }
};

C
chengduo 已提交
48 49 50 51 52 53 54 55
class MeanOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

D
dongzhihong 已提交
56
class MeanGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
57 58 59
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

60
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
61
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
62
    ctx->ShareLoD("X", framework::GradVarName("X"));
Y
Yu Yang 已提交
63
  }
C
chengduo 已提交
64 65 66

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
S
sneaxiy 已提交
67 68
    auto input_data_type =
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type();
C
chengduo 已提交
69 70
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
Y
Yu Yang 已提交
71 72
};

73 74 75 76 77
class MeanGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
78 79
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
80 81 82 83
    grad_op->SetType("mean_grad");
    grad_op->SetInput("X", Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
Y
Yu Yang 已提交
84
    return std::unique_ptr<framework::OpDesc>(grad_op);
85 86 87
  }
};

S
sneaxiy 已提交
88 89
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(MeanGradNoNeedBufferVarsInference, "X");

L
liaogang 已提交
90 91 92
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
93
namespace ops = paddle::operators;
C
chengduo 已提交
94 95
REGISTER_OPERATOR(mean, ops::MeanOp, ops::MeanOpMaker, ops::MeanOpInferVarType,
                  ops::MeanGradMaker);
S
sneaxiy 已提交
96 97
REGISTER_OPERATOR(mean_grad, ops::MeanGradOp,
                  ops::MeanGradNoNeedBufferVarsInference);
Q
QI JUN 已提交
98 99 100 101 102 103
REGISTER_OP_CPU_KERNEL(
    mean, ops::MeanKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MeanKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    mean_grad, ops::MeanGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MeanGradKernel<paddle::platform::CPUDeviceContext, double>);