pybind.cc 36.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/framework/version.h"
D
dzhwinter 已提交
37
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/platform/enforce.h"
40
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
41 42 43 44
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
45 46
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
47
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
49

50
#include "paddle/fluid/string/to_string.h"
51

D
Dong Zhihong 已提交
52
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
53 54 55
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
56 57
#endif

M
minqiyang 已提交
58 59
#include "pybind11/stl.h"

Q
Qiao Longfei 已提交
60 61 62
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

63
namespace paddle {
64
namespace pybind {
65
bool IsCompiledWithCUDA() {
66
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
67 68 69 70 71 72
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
73
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
74
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
75 76 77 78 79 80
  return true;
#else
  return false;
#endif
}

81 82
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
83

84 85 86 87
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

88
  BindException(&m);
Y
Yu Yang 已提交
89

90 91 92
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
93
      .def("_get_dims",
94
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
95
      .def("_set_dims",
Q
qijun 已提交
96
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
97
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
98
           })
Y
yuyang18 已提交
99
      .def("_set_layout",
D
dzhwinter 已提交
100 101 102
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
103
      .def("_alloc_float",
D
dzhwinter 已提交
104
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
105
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
106
           })
Y
yuyang18 已提交
107
      .def("_alloc_float",
Y
Yu Yang 已提交
108
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
109
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
110
           })
Y
yuyang18 已提交
111
      .def("_alloc_int",
Y
Yu Yang 已提交
112
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
113
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
114
           })
Y
yuyang18 已提交
115
      .def("_alloc_int",
D
dzhwinter 已提交
116
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
117
             self.mutable_data<int>(place);
Q
qijun 已提交
118
           })
Y
yuyang18 已提交
119
      .def("_alloc_int",
C
chengduoZH 已提交
120 121 122
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
123
      .def("_alloc_float",
C
chengduoZH 已提交
124 125 126
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
127 128
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
129
      .def("set", PyCPUTensorSetFromArray<double>)
130
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
131
      .def("set", PyCPUTensorSetFromArray<bool>)
132
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
133
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
134
      .def("set", PyCPUTensorSetFromArray<int8_t>)
135
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
136 137
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
138
      .def("set", PyCUDATensorSetFromArray<double>)
139
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
140
      .def("set", PyCUDATensorSetFromArray<bool>)
141
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
142
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
143
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
144 145 146 147 148 149
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
150
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
151
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
152
#endif
153
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
154 155 156 157 158
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
159

X
Xin Pan 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
173
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
174
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
175
     columns, hence [5, 2].
X
Xin Pan 已提交
176 177 178

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
179 180
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
204 205
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
206 207 208 209 210 211 212 213 214 215 216 217 218 219
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
220
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
221 222 223 224 225
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
226
      .def("set_lod",
227
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
228
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
229
             LoD new_lod;
230 231
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
232 233
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
234
             self.set_lod(new_lod);
D
dangqingqing 已提交
235
           })
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
261
      // Set above comments of set_lod.
262 263 264 265 266 267 268 269 270 271 272 273 274
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
275 276
      });

Q
qijun 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
290 291 292 293 294 295 296 297 298
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
299
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
300
      .def("rows", [](SelectedRows &self) {
301 302 303 304 305
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
306
      });
Q
qijun 已提交
307

308
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
309 310 311

All parameter, weight, gradient are variables in Paddle.
)DOC")
312
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
313
      .def("set_int",
314 315
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
316 317 318 319 320 321 322
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
323
      .def("get_tensor",
324 325
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
326 327
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
328 329 330
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
331 332 333 334 335
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
336 337 338
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
339 340 341 342 343 344 345
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Refine  
Yu Yang 已提交
346 347 348 349 350
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
Y
Yu Yang 已提交
351
           py::return_value_policy::reference);
352

Y
Refine  
Yu Yang 已提交
353
  py::class_<framework::ReaderHolder>(m, "Reader", "")
354
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
355

S
sneaxiy 已提交
356 357 358 359
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
360 361
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
362
      .def("push",
S
sneaxiy 已提交
363
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
364
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
365
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
366
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
367
           })
S
sneaxiy 已提交
368 369 370 371
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
372

S
sneaxiy 已提交
373
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
374
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
375
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
376
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
377 378 379 380 381 382 383
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
              holder->InitOnce(capacity, dims);
S
sneaxiy 已提交
384
              return holder->GetQueue();
S
sneaxiy 已提交
385
            },
S
sneaxiy 已提交
386
        py::return_value_policy::copy);
S
sneaxiy 已提交
387

388
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
389
      .def("var",
390
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
391
             return self.Var(name);
Y
Yu Yang 已提交
392
           },
393
           py::return_value_policy::reference)
394
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
395
      .def(py::init<>())
396
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
397
           py::return_value_policy::reference)
Y
Yu Yang 已提交
398
      .def("drop_kids", &Scope::DropKids);
399

Y
Yu Yang 已提交
400 401
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
402 403
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
404 405 406 407 408 409 410 411 412 413
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
414 415
    return ret_values;
  });
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
432
  m.def("prune", [](const ProgramDesc &origin,
433
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
434
    ProgramDesc prog_with_targets(origin);
435
    for (const auto &t : targets) {
436
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
437
    }
438
    proto::ProgramDesc pruned_desc;
439
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
440
    return new ProgramDesc(pruned_desc);
441
  });
442 443 444 445
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
446 447 448
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
449 450
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
451
  // clang-format off
Y
Yu Yang 已提交
452
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
453 454
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
455
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
456 457 458
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
459
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
460
                      -> paddle::platform::DeviceContext* {
461
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
462
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
463
#else
Q
qijun 已提交
464
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
465
#endif
C
chengduoZH 已提交
466 467 468 469 470 471 472 473 474 475 476
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
477 478 479 480
// clang-format on
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
481
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
482
      .def(py::init<int>())
D
dzhwinter 已提交
483
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
484

485 486 487
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
488

C
chengduoZH 已提交
489 490 491 492
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
493 494 495 496 497 498 499
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
500
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
501
             self = gpu_place;
C
chengduoZH 已提交
502 503
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
504 505
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
506
      });
Y
Yu Yang 已提交
507

Y
Yu Yang 已提交
508 509 510
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
511
                    proto::OpDesc desc;
Y
Yu Yang 已提交
512 513 514 515 516
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
517
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
518
                  })
519
      .def("run",
520
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
521 522 523
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
524
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
525 526 527 528 529
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
530 531 532 533 534 535 536
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
537 538
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
539
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
540
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
541 542 543 544
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
545

F
fengjiayi 已提交
546
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
547
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
548
      .def("close", &Executor::Close)
S
sneaxiy 已提交
549 550 551 552 553
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
554

D
dzhwinter 已提交
555
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
556
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
557 558
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
559

560
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
561
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
562 563 564 565 566 567
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
568

569
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
570
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
571

X
Xin Pan 已提交
572 573
  m.def("_is_program_version_supported", IsProgramVersionSupported);

574 575 576 577 578
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
579

Y
Yu Yang 已提交
580 581 582 583 584 585 586 587 588
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
589
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
590 591
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
608 609 610
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
611
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
612
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
613
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
614 615 616 617

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
618
#endif
Y
Yu Yang 已提交
619

620 621 622 623
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
624
      .value("kAll", platform::ProfilerState::kAll)
625 626 627 628 629 630 631 632 633 634 635 636 637
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
638
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
639
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
640

641 642 643 644 645 646 647
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
      .def("set_str", [](ir::Pass &self, const std::string &name,
                         const std::string &attr) {
        self.Set<std::string>(name, new std::string(attr));
      });

X
fix  
Xin Pan 已提交
648 649
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
650 651 652 653 654 655 656 657 658 659 660 661 662 663
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
664
  // -- python binds for parallel executor.
Y
yuyang18 已提交
665
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
666 667 668 669
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
670 671 672 673 674 675 676 677 678 679 680
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
681 682 683

        )DOC");

Y
yuyang18 已提交
684
  exec_strategy.def(py::init())
Y
yuyang18 已提交
685 686 687 688 689
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
690 691 692 693 694 695 696 697 698 699
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
700
      .def_property(
701 702 703 704
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
705 706 707 708
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
709 710 711 712 713
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
714 715 716 717
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
718 719 720 721 722 723 724
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
              )DOC");

Y
yuyang18 已提交
738
  exec_strategy.def_property(
Y
yuyang18 已提交
739 740 741 742 743 744 745
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
746 747
      });

C
chengduo 已提交
748 749 750 751
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
752 753 754 755 756 757 758 759 760 761 762
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
763
)DOC");
Y
yuyang18 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
            self.reduce_ = strategy;
C
chengduo 已提交
781 782 783 784 785 786 787
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
788 789 790 791 792 793
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
            self.gradient_scale_ = strategy;
C
chengduo 已提交
794 795 796 797 798 799
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
800 801 802 803 804
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
805 806 807 808
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
809 810 811
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
812 813 814 815 816 817 818 819 820 821 822 823 824 825
          [](BuildStrategy &self, bool b) {
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
826
      .def("_create_passes_from_strategy",
X
fix  
Xin Pan 已提交
827 828 829
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
             return self.CreatePassesFromStrategy();
           });
Y
yuyang18 已提交
830 831 832 833

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
834
                  const std::string &, Scope *, std::vector<Scope *> &,
835 836
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
837 838 839 840
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
841 842 843 844 845
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
846 847 848 849
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
850 851 852 853 854 855
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
856

857
  BindRecordIOWriter(&m);
858
  return m.ptr();
L
Luo Tao 已提交
859
}
860
}  // namespace pybind
861
}  // namespace paddle