multiplex_op.cc 5.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

S
sneaxiy 已提交
15
#include <memory>
S
sneaxiy 已提交
16
#include <vector>
17 18

#include "paddle/fluid/framework/infershape_utils.h"
19
#include "paddle/fluid/framework/op_registry.h"
20 21 22
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/multiary.h"

Y
Yibing Liu 已提交
23 24 25 26 27
namespace paddle {
namespace operators {

class MultiplexOp : public framework::OperatorWithKernel {
 public:
28
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
29

30
 protected:
31
  phi::KernelKey GetExpectedKernelType(
Y
Yu Yang 已提交
32
      const framework::ExecutionContext& ctx) const override {
33 34
    return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
                          ctx.device_context().GetPlace());
Y
Yu Yang 已提交
35
  }
Y
Yibing Liu 已提交
36 37 38 39
};

class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
40
  void Make() override {
Y
yuyang18 已提交
41 42 43 44 45 46
    AddInput("Ids",
             "Tensor<int32>, index variable which is a 2-D tensor with shape "
             "[M, 1] where M is the batch size.");
    AddInput("X",
             "A list of variables to gather from. All variables have the same "
             "shape and the rank is at least 2.")
47
        .AsDuplicable();
Y
Yibing Liu 已提交
48
    AddOutput("Out", "The output tensor of multiplex operator.");
K
kexinzhao 已提交
49
    AddComment(R"DOC(
Y
yuyang18 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
Referring to the given index variable, this layer selects rows from the
input variables to construct a multiplex variable. Assuming that there are
:math:`m` input variables and :math:`I_i` represents the i-th input
variable and :math:`i` is in [0, :math:`m`). All input variables are
tensors with same shape [:math:`d_0`, :math:`d_1`, ..., :math:`d_R`].
Please note that rank of the input tensor should be at least 2. Each input
variable will be treated as a 2-D matrix with shape [:math:`M`, :math:`N`]
where :math:`M` for :math:`d_0` and :math:`N` for :math:`d_1` * :math:`d_2`
* ... * :math:`d_R`. Let :math:`I_i[j]` be the j-th row of the i-th input
variable. The given index variable should be a 2-D tensor with shape
[:math:`M`, 1]. Let `ID[i]` be the i-th index value of the index variable.
Then the output variable will be a tensor with shape [:math:`d_0`,
:math:`d_1`, ..., :math:`d_R`]. If we treat the output tensor as a 2-D
matrix with shape [:math:`M`, :math:`N`] and let :math:`O[i]` be the i-th
row of the matrix, then `O[i]` is equal to :math:`I_{ID[i]}[i]`.

* Ids: the index tensor.

* X[0 : N - 1]: the candidate tensors for output (N >= 2).

* For each index i from 0 to batchSize - 1, the output is the i-th row of the
71
the (Ids[i])-th tensor.
Y
Yibing Liu 已提交
72

73
For i-th row of the output tensor:
Y
Yibing Liu 已提交
74

Y
yuyang18 已提交
75 76 77
$$
y[i] = x_{k}[i]
$$
Y
Yibing Liu 已提交
78

Y
yuyang18 已提交
79 80
where $y$ is the output tensor, $x_{k}$ is the k-th input tensor,
and $k = Ids[i]$.
K
kexinzhao 已提交
81

Y
Yibing Liu 已提交
82 83 84 85 86 87
)DOC");
  }
};

class MultiplexGradOp : public framework::OperatorWithKernel {
 public:
88
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
89

90
  void InferShape(framework::InferShapeContext* ctx) const override {
H
hong 已提交
91
    auto dxs = ctx->Outputs(framework::GradVarName("X"));
92 93
    PADDLE_ENFORCE_NE(dxs.empty(),
                      true,
94 95
                      platform::errors::InvalidArgument(
                          "Output(X@Grad) should not be null."));
96 97 98 99
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
                   "MultiplexGrad");
S
sneaxiy 已提交
100 101 102
    auto dout_dim = ctx->GetInputDim(framework::GradVarName("Out"));
    ctx->SetOutputsDim(framework::GradVarName("X"),
                       std::vector<framework::DDim>(dxs.size(), dout_dim));
Y
Yibing Liu 已提交
103
  }
Y
Yu Yang 已提交
104

105
 protected:
106
  phi::KernelKey GetExpectedKernelType(
Y
Yu Yang 已提交
107
      const framework::ExecutionContext& ctx) const override {
108 109 110
    return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(
                              ctx, framework::GradVarName("Out")),
                          ctx.device_context().GetPlace());
S
sneaxiy 已提交
111 112 113
  }
};

H
hong 已提交
114 115
template <typename T>
class MultiplexGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
116
 public:
H
hong 已提交
117
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
118 119

 protected:
120
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
121
    op->SetType("multiplex_grad");
H
hong 已提交
122 123 124 125
    op->SetInput("Ids", this->Input("Ids"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X", false));
    op->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
126
  }
Y
Yibing Liu 已提交
127 128 129 130
};

}  // namespace operators
}  // namespace paddle
S
sneaxiy 已提交
131

Y
Yibing Liu 已提交
132
namespace ops = paddle::operators;
133 134
DECLARE_INFER_SHAPE_FUNCTOR(multiplex,
                            MultiplexInferShapeFunctor,
135
                            PD_INFER_META(phi::MultiplexInferMeta));
Y
Yibing Liu 已提交
136

137 138 139
REGISTER_OPERATOR(multiplex,
                  ops::MultiplexOp,
                  ops::MultiplexOpMaker,
H
hong 已提交
140
                  ops::MultiplexGradMaker<paddle::framework::OpDesc>,
141 142
                  ops::MultiplexGradMaker<paddle::imperative::OpBase>,
                  MultiplexInferShapeFunctor);
143
REGISTER_OPERATOR(multiplex_grad, ops::MultiplexGradOp);