multiplex_op.cc 4.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/multiplex_op.h"
Y
Yibing Liu 已提交
16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class MultiplexOp : public framework::OperatorWithKernel {
 public:
24
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
25

26
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
27 28
    PADDLE_ENFORCE(ctx->HasInput("Ids"), "Input(Ids) shouldn't be null.");
    PADDLE_ENFORCE(!ctx->Inputs("X").empty(),
29
                   "MultiInput(X) shouldn't be empty.");
Q
Qiao Longfei 已提交
30 31
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null.");
    auto ids_dim = ctx->GetInputDim("Ids");
32 33 34 35
    PADDLE_ENFORCE(
        ids_dim.size() == 2 && ids_dim[1] == 1,
        "The index tensor must be a vector with size batchSize x 1.");

Q
Qiao Longfei 已提交
36 37
    auto ins_dims = ctx->GetInputsDim("X");
    auto num_ins = ins_dims.size();
38 39 40
    PADDLE_ENFORCE(num_ins > 1,
                   "multiplex operator should have more than "
                   "one candidate input tensors.");
Y
Yibing Liu 已提交
41

Q
Qiao Longfei 已提交
42
    auto in_dim = ins_dims[0];
43 44
    PADDLE_ENFORCE(in_dim.size() >= 2,
                   "The rank of candidate tensors must be not less than 2.");
45
    for (size_t i = 1; i < num_ins; i++) {
Q
Qiao Longfei 已提交
46
      auto dim = ins_dims[i];
Y
Yibing Liu 已提交
47
      PADDLE_ENFORCE(in_dim == dim,
48
                     "All the candidate tensors must have the same size.");
Y
Yibing Liu 已提交
49
    }
Q
Qiao Longfei 已提交
50
    ctx->SetOutputDim("Out", in_dim);
Y
Yibing Liu 已提交
51
  }
Y
Yu Yang 已提交
52

53
 protected:
54
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
55
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
56 57 58
    return framework::OpKernelType(
        framework::ToDataType(ctx.MultiInput<Tensor>("X")[0]->type()),
        ctx.device_context());
Y
Yu Yang 已提交
59
  }
Y
Yibing Liu 已提交
60 61 62 63
};

class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
64
  void Make() override {
65 66 67
    AddInput("Ids", "The index tensor of multiplex operator.");
    AddInput("X", "The candidate tensors of multiplex operator.")
        .AsDuplicable();
Y
Yibing Liu 已提交
68
    AddOutput("Out", "The output tensor of multiplex operator.");
K
kexinzhao 已提交
69 70
    AddComment(R"DOC(
Multiplex Operator.
Y
Yibing Liu 已提交
71

72
Multiplex multiple tensors according to the index provided by the index tensor.
Y
Yibing Liu 已提交
73

74 75
Ids: the index tensor.
X[0 : N - 1]: the candidate tensors for output (N >= 2).
Y
Yibing Liu 已提交
76
For each index i from 0 to batchSize - 1, the output is the i-th row of the
77
the (Ids[i])-th tensor.
Y
Yibing Liu 已提交
78

79
For i-th row of the output tensor:
Y
Yibing Liu 已提交
80

K
kexinzhao 已提交
81
$$y[i] = x_{k}[i]$$
Y
Yibing Liu 已提交
82

K
kexinzhao 已提交
83
where `y` is the output tensor, `x_{k}` is the k-th input tensor,
84
and `k = Ids[i]`.
K
kexinzhao 已提交
85

Y
Yibing Liu 已提交
86 87 88 89 90 91
)DOC");
  }
};

class MultiplexGradOp : public framework::OperatorWithKernel {
 public:
92
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
93

94
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
95 96
    PADDLE_ENFORCE(!ctx->Inputs("X").empty(), "Input(X) should not be null.");
    PADDLE_ENFORCE(!ctx->Outputs(framework::GradVarName("X")).empty(),
Y
Yibing Liu 已提交
97
                   "Output(X@Grad) should not be null.");
Q
Qiao Longfei 已提交
98 99
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null.");
100
    ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
Y
Yibing Liu 已提交
101
  }
Y
Yu Yang 已提交
102

103
 protected:
104
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
105
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
106 107 108
    return framework::OpKernelType(
        framework::ToDataType(ctx.MultiInput<Tensor>("X")[0]->type()),
        ctx.device_context());
Y
Yu Yang 已提交
109
  }
Y
Yibing Liu 已提交
110 111 112 113 114 115
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

116 117 118
REGISTER_OPERATOR(multiplex, ops::MultiplexOp, ops::MultiplexOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<false>);
REGISTER_OPERATOR(multiplex_grad, ops::MultiplexGradOp);
Y
Yibing Liu 已提交
119
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
120
    multiplex,
121 122 123 124
    ops::MultiplexCPUKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MultiplexCPUKernel<paddle::platform::CPUDeviceContext, double>,
    ops::MultiplexCPUKernel<paddle::platform::CPUDeviceContext, int>,
    ops::MultiplexCPUKernel<paddle::platform::CPUDeviceContext, int64_t>);
125 126
REGISTER_OP_CPU_KERNEL(
    multiplex_grad,
127 128 129 130
    ops::MultiplexGradCPUKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MultiplexGradCPUKernel<paddle::platform::CPUDeviceContext, double>,
    ops::MultiplexGradCPUKernel<paddle::platform::CPUDeviceContext, int>,
    ops::MultiplexGradCPUKernel<paddle::platform::CPUDeviceContext, int64_t>);