nn.py 14.5 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce

from .. import core
from ..layers import utils
from . import layers
from ..framework import Variable, OpProtoHolder
from ..param_attr import ParamAttr
from ..initializer import Normal, Constant

__all__ = [
    'Conv2D',
    'Pool2D',
    'FC',
M
minqiyang 已提交
30
    'BatchNorm',
M
minqiyang 已提交
31 32 33
]


X
Xin Pan 已提交
34
class Conv2D(layers.Layer):
M
minqiyang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 use_cudnn=True,
                 act=None,
                 param_attr=None,
                 bias_attr=None,
                 name=None,
                 dtype=core.VarDesc.VarType.FP32):
        assert param_attr is not False, "param_attr should not be False here."
M
minqiyang 已提交
50 51 52 53 54 55 56 57
        super(Conv2D, self).__init__(name=name, dtype=dtype)

        from ..layer_helper import LayerHelper
        self._helper = LayerHelper(
            type(self).__name__,
            param_attr=param_attr,
            bias_attr=bias_attr,
            dtype=dtype,
M
minqiyang 已提交
58 59
            name=name,
            act=act)
M
minqiyang 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
        self._num_channels = num_channels
        if (self._num_channels == self._groups and
                num_filters % self._num_channels == 0 and not self._use_cudnn):
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'

        if groups is None:
            num_filter_channels = num_channels
        else:
            if num_channels % groups != 0:
                raise ValueError("num_channels must be divisible by groups.")
            num_filter_channels = num_channels // groups
        filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
        filter_shape = [num_filters, int(num_filter_channels)] + filter_size

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * num_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

        self._filter_param = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

        if self._use_cudnn:
            self._helper.create_variable(
                name="kCUDNNFwdAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            self._helper.create_variable(
                name="kCUDNNBwdDataAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            self._helper.create_variable(
                name="kCUDNNBwdFilterAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)

M
minqiyang 已提交
109 110
        self._bias_param = self._helper.create_parameter(
            attr=self._helper.bias_attr,
M
minqiyang 已提交
111
            shape=[num_filters],
M
minqiyang 已提交
112 113
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
114 115

    def forward(self, input):
M
minqiyang 已提交
116 117 118
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
119 120 121 122 123 124
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
M
minqiyang 已提交
125
            outputs={"Output": pre_bias},
M
minqiyang 已提交
126 127 128 129 130 131 132 133 134
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            })

M
minqiyang 已提交
135 136
        pre_act = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
M
minqiyang 已提交
137

M
minqiyang 已提交
138 139 140 141 142 143 144
        self._helper.append_op(
            type='elementwise_add',
            inputs={'X': [pre_bias],
                    'Y': [self._bias_param]},
            outputs={'Out': [pre_act]},
            attrs={'axis': 1})

M
minqiyang 已提交
145
        # Currently, we don't support inplace in imperative mode
M
minqiyang 已提交
146
        return self._helper.append_activation(pre_act)
M
minqiyang 已提交
147 148


X
Xin Pan 已提交
149
class Pool2D(layers.Layer):
M
minqiyang 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
                 exclusive=True,
                 name=None,
                 dtype=core.VarDesc.VarType.FP32):
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

        super(Pool2D, self).__init__(name=name, dtype=dtype)

M
minqiyang 已提交
176 177 178
        from ..layer_helper import LayerHelper
        self._helper = LayerHelper(type(self).__name__, dtype=dtype, name=name)

M
minqiyang 已提交
179 180 181 182 183 184 185 186 187 188 189 190
        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
M
minqiyang 已提交
191 192
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
193 194 195
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
196
            outputs={"Out": pool_out},
M
minqiyang 已提交
197 198 199 200 201 202 203 204 205 206 207
            attrs={
                "pooling_type": self._pool_type,
                "ksize": self._pool_size,
                "global_pooling": self._global_pooling,
                "strides": self._pool_stride,
                "paddings": self._pool_padding,
                "use_cudnn": self._use_cudnn,
                "ceil_mode": self._ceil_mode,
                "use_mkldnn": False,
                "exclusive": self._exclusive,
            })
M
minqiyang 已提交
208
        return pool_out
M
minqiyang 已提交
209 210


X
Xin Pan 已提交
211
class FC(layers.Layer):
M
minqiyang 已提交
212
    def __init__(self,
M
minqiyang 已提交
213
                 size,
M
minqiyang 已提交
214
                 param_attr=None,
M
minqiyang 已提交
215 216
                 bias_attr=None,
                 dtype=core.VarDesc.VarType.FP32,
M
minqiyang 已提交
217
                 num_flatten_dims=1,
M
minqiyang 已提交
218 219 220
                 act=None,
                 is_test=False,
                 name=None):
M
minqiyang 已提交
221
        super(FC, self).__init__()
M
minqiyang 已提交
222

M
minqiyang 已提交
223
        self._size = size
M
minqiyang 已提交
224 225
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
M
minqiyang 已提交
226
        from ..layer_helper import LayerHelper
M
minqiyang 已提交
227 228 229 230 231 232
        self._helper = LayerHelper(
            'FC',
            param_attr=param_attr,
            bias_attr=bias_attr,
            act=act,
            name=name)
M
minqiyang 已提交
233 234 235 236 237

    def _build_once(self, input):
        input_shape = input.shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
M
minqiyang 已提交
238
        ] + [self._size]
M
minqiyang 已提交
239 240 241 242 243
        self._w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
244 245 246 247 248 249 250 251 252 253

        if self._helper.bias_attr:
            size = list([self._size])
            self._b = self._helper.create_parameter(
                attr=self._helper.bias_attr,
                shape=size,
                dtype=self._dtype,
                is_bias=True)
        else:
            self._b = None
M
minqiyang 已提交
254 255

    def forward(self, input):
M
minqiyang 已提交
256
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
M
minqiyang 已提交
257 258 259 260
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._w},
M
minqiyang 已提交
261
            outputs={"Out": tmp},
M
minqiyang 已提交
262 263 264 265 266
            attrs={
                "x_num_col_dims": self._num_flatten_dims,
                "y_num_col_dims": 1
            })

M
minqiyang 已提交
267
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
M
minqiyang 已提交
268 269
        self._helper.append_op(
            type="sum",
M
minqiyang 已提交
270
            inputs={"X": [tmp]},
M
minqiyang 已提交
271
            outputs={"Out": pre_bias},
M
minqiyang 已提交
272
            attrs={"use_mkldnn": False})
M
minqiyang 已提交
273

274 275 276 277 278 279 280 281 282 283 284
        if self._b:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._b]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': self._num_flatten_dims})
        else:
            pre_activation = pre_bias
M
minqiyang 已提交
285
        # Currently, we don't support inplace in imperative mode
M
minqiyang 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
        return self._helper.append_activation(pre_activation)


class BatchNorm(layers.Layer):
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 dtype=core.VarDesc.VarType.FP32,
                 data_layout='NCHW',
                 in_place=False,
                 name=None,
                 moving_mean_name=None,
                 moving_variance_name=None,
                 do_model_average_for_mean_and_var=False,
                 fuse_with_relu=False,
                 use_global_stats=False):
        super(BatchNorm, self).__init__()

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

        from ..layer_helper import LayerHelper
        self._helper = LayerHelper(
M
minqiyang 已提交
313 314 315 316 317
            'batch_norm',
            param_attr=param_attr,
            bias_attr=bias_attr,
            name=name,
            act=act)
M
minqiyang 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

        if dtype == core.VarDesc.VarType.FP16:
            self._dtype = core.VarDesc.VarType.FP32
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
        self._scale = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

M
minqiyang 已提交
333 334 335 336
        # TODO(minqiyang): change stop_gradient sign to trainable to align with static graph
        #  # setting stop_gradient=True to reduce computation
        #  if use_global_stats and self._helper.param_attr.learning_rate == 0.:
        #  self._scale.stop_gradient = True
M
minqiyang 已提交
337 338 339 340 341 342

        self._bias = self._helper.create_parameter(
            attr=self._helper.bias_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
343 344 345 346
        # TODO(minqiyang): change stop_gradient sign to trainable to align with static graph
        #  # setting stop_gradient=True to reduce computation
        #  if use_global_stats and self._helper.bias_attr.learning_rate == 0.:
        #  self._bias.stop_gradient = True
M
minqiyang 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385

        self._mean = self._helper.create_parameter(
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
        self._mean.stop_gradient = True

        self._variance = self._helper.create_parameter(
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
        self._variance.stop_gradient = True

        self._in_place = in_place
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
        self._fuse_with_relu = fuse_with_relu
        self._use_global_stats = use_global_stats

    def _build_once(self, input):
        pass

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        saved_mean = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
386
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
387
        saved_variance = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
388
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
389
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
390
            self._dtype)
M
minqiyang 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

        self._helper.append_op(
            type="batch_norm",
            inputs={
                "X": input,
                "Scale": self._scale,
                "Bias": self._bias,
                "Mean": self._mean,
                "Variance": self._variance
            },
            outputs={
                "Y": batch_norm_out,
                "MeanOut": mean_out,
                "VarianceOut": variance_out,
                "SavedMean": saved_mean,
                "SavedVariance": saved_variance
            },
            attrs={
                "momentum": self._momentum,
                "epsilon": self._epsilon,
                "is_test": self._is_test,
                "use_mkldnn": False,
                "fuse_with_relu": self._fuse_with_relu,
                "use_global_stats": self._use_global_stats
            })

M
minqiyang 已提交
417
        # Currently, we don't support inplace in imperative mode
M
minqiyang 已提交
418
        return self._helper.append_activation(batch_norm_out)