gru_compute.cc 4.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/math/gru_compute.h"
W
wanghuancoder 已提交
13

Y
Yu Yang 已提交
14
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
15 16
#include "paddle/fluid/operators/math/detail/gru_cpu_kernel.h"
#include "paddle/fluid/operators/math/detail/gru_kernel.h"
G
guosheng 已提交
17

W
wanghuancoder 已提交
18 19 20 21 22 23
namespace paddle {
namespace platform {
class CPUDeviceContext;
}  // namespace platform
}  // namespace paddle

G
guosheng 已提交
24 25 26 27 28
namespace paddle {
namespace operators {
namespace math {

template <typename T>
Q
QI JUN 已提交
29 30
struct GRUUnitFunctor<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
31 32
                      GRUMetaValue<T> value, int frame_size, int batch_size,
                      const detail::ActivationType active_node,
Q
Qiao Longfei 已提交
33 34
                      const detail::ActivationType active_gate,
                      bool origin_mode) {
G
guosheng 已提交
35
#ifndef __NVCC__
Y
Yu Yang 已提交
36
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
G
guosheng 已提交
37
    if (value.prev_out_value) {
Y
Yu Yang 已提交
38 39 40
      blas.GEMM(false, false, batch_size, frame_size * 2, frame_size, 1,
                value.prev_out_value, frame_size, value.gate_weight,
                frame_size * 2, 1, value.gate_value, frame_size * 3);
G
guosheng 已提交
41 42 43
    }

    detail::forward_reset_output(detail::forward::gru_resetOutput<T>(), value,
G
guosheng 已提交
44
                                 frame_size, batch_size, active_gate);
G
guosheng 已提交
45

G
guosheng 已提交
46
    if (value.prev_out_value) {
Y
Yu Yang 已提交
47 48 49 50
      blas.GEMM(false, false, batch_size, frame_size, frame_size, 1,
                value.reset_output_value, frame_size, value.state_weight,
                frame_size, 1, value.gate_value + frame_size * 2,
                frame_size * 3);
G
guosheng 已提交
51 52 53
    }

    detail::forward_final_output(detail::forward::gru_finalOutput<T>(), value,
Q
Qiao Longfei 已提交
54 55
                                 frame_size, batch_size, active_node,
                                 origin_mode);
G
guosheng 已提交
56 57 58 59 60
#endif
  }
};

template <typename T>
Q
QI JUN 已提交
61 62
struct GRUUnitGradFunctor<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
63
                      GRUMetaValue<T> value, GRUMetaGrad<T> grad,
G
guosheng 已提交
64
                      int frame_size, int batch_size,
65
                      const detail::ActivationType active_node,
Q
Qiao Longfei 已提交
66 67
                      const detail::ActivationType active_gate,
                      bool origin_mode) {
G
guosheng 已提交
68 69
#ifndef __NVCC__
    detail::backward_state_grad(detail::backward::gru_stateGrad<T>(), value,
Q
Qiao Longfei 已提交
70 71
                                grad, frame_size, batch_size, active_node,
                                origin_mode);
Y
Yu Yang 已提交
72
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
G
guosheng 已提交
73
    if (value.prev_out_value && grad.prev_out_grad) {
Y
Yu Yang 已提交
74 75 76 77
      blas.GEMM(false, true, batch_size, frame_size, frame_size, 1,
                grad.gate_grad + frame_size * 2, frame_size * 3,
                value.state_weight, frame_size, 0, grad.reset_output_grad,
                frame_size);
G
guosheng 已提交
78

G
guosheng 已提交
79
      if (grad.state_weight_grad) {
Y
Yu Yang 已提交
80 81 82 83
        blas.GEMM(true, false, frame_size, frame_size, batch_size, 1,
                  value.reset_output_value, frame_size,
                  grad.gate_grad + frame_size * 2, frame_size * 3, 1,
                  grad.state_weight_grad, frame_size);
G
guosheng 已提交
84 85 86 87
      }
    }

    detail::backward_reset_grad(detail::backward::gru_resetGrad<T>(), value,
Q
Qiao Longfei 已提交
88
                                grad, frame_size, batch_size, active_gate);
G
guosheng 已提交
89
    if (grad.prev_out_grad && value.prev_out_value) {
Y
Yu Yang 已提交
90 91 92
      blas.GEMM(false, true, batch_size, frame_size, frame_size * 2, 1,
                grad.gate_grad, frame_size * 3, value.gate_weight,
                frame_size * 2, 1, grad.prev_out_grad, frame_size);
G
guosheng 已提交
93

G
guosheng 已提交
94
      if (grad.gate_weight_grad) {
Y
Yu Yang 已提交
95 96 97
        blas.GEMM(true, false, frame_size, frame_size * 2, batch_size, 1,
                  value.prev_out_value, frame_size, grad.gate_grad,
                  frame_size * 3, 1, grad.gate_weight_grad, frame_size * 2);
G
guosheng 已提交
98 99 100 101 102 103
      }
    }
#endif
  }
};

Q
QI JUN 已提交
104 105 106 107
template struct GRUUnitFunctor<platform::CPUDeviceContext, float>;
template struct GRUUnitFunctor<platform::CPUDeviceContext, double>;
template struct GRUUnitGradFunctor<platform::CPUDeviceContext, float>;
template struct GRUUnitGradFunctor<platform::CPUDeviceContext, double>;
G
guosheng 已提交
108 109 110 111

}  // namespace math
}  // namespace operators
}  // namespace paddle