gru_compute.cc 4.4 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/gru_compute.h"
#include "paddle/operators/math/detail/gru_cpu_kernel.h"
#include "paddle/operators/math/detail/gru_kernel.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {
namespace math {

template <typename T>
Q
QI JUN 已提交
22 23
struct GRUUnitFunctor<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
24 25 26
                      GRUMetaValue<T> value, int frame_size, int batch_size,
                      const detail::ActivationType active_node,
                      const detail::ActivationType active_gate) {
G
guosheng 已提交
27
#ifndef __NVCC__
G
guosheng 已提交
28
    if (value.prev_out_value) {
Q
QI JUN 已提交
29
      math::gemm<platform::CPUDeviceContext, T>(
G
guosheng 已提交
30 31 32
          context, false, false, batch_size, frame_size * 2, frame_size, 1,
          value.prev_out_value, frame_size, value.gate_weight, frame_size * 2,
          1, value.gate_value, frame_size * 3);
G
guosheng 已提交
33 34 35
    }

    detail::forward_reset_output(detail::forward::gru_resetOutput<T>(), value,
G
guosheng 已提交
36
                                 frame_size, batch_size, active_gate);
G
guosheng 已提交
37

G
guosheng 已提交
38
    if (value.prev_out_value) {
Q
QI JUN 已提交
39
      math::gemm<platform::CPUDeviceContext, T>(
G
guosheng 已提交
40 41 42
          context, false, false, batch_size, frame_size, frame_size, 1,
          value.reset_output_value, frame_size, value.state_weight, frame_size,
          1, value.gate_value + frame_size * 2, frame_size * 3);
G
guosheng 已提交
43 44 45
    }

    detail::forward_final_output(detail::forward::gru_finalOutput<T>(), value,
G
guosheng 已提交
46
                                 frame_size, batch_size, active_node);
G
guosheng 已提交
47 48 49 50 51
#endif
  }
};

template <typename T>
Q
QI JUN 已提交
52 53
struct GRUUnitGradFunctor<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
54
                      GRUMetaValue<T> value, GRUMetaGrad<T> grad,
G
guosheng 已提交
55
                      int frame_size, int batch_size,
56 57
                      const detail::ActivationType active_node,
                      const detail::ActivationType active_gate) {
G
guosheng 已提交
58 59
#ifndef __NVCC__
    detail::backward_state_grad(detail::backward::gru_stateGrad<T>(), value,
G
guosheng 已提交
60
                                grad, frame_size, batch_size, active_node);
G
guosheng 已提交
61

G
guosheng 已提交
62
    if (value.prev_out_value && grad.prev_out_grad) {
Q
QI JUN 已提交
63
      math::gemm<platform::CPUDeviceContext, T>(
G
guosheng 已提交
64 65 66
          context, false, true, batch_size, frame_size, frame_size, 1,
          grad.gate_grad + frame_size * 2, frame_size * 3, value.state_weight,
          frame_size, 0, grad.reset_output_grad, frame_size);
G
guosheng 已提交
67

G
guosheng 已提交
68
      if (grad.state_weight_grad) {
Q
QI JUN 已提交
69
        math::gemm<platform::CPUDeviceContext, T>(
G
guosheng 已提交
70 71 72 73
            context, true, false, frame_size, frame_size, batch_size, 1,
            value.reset_output_value, frame_size,
            grad.gate_grad + frame_size * 2, frame_size * 3, 1,
            grad.state_weight_grad, frame_size);
G
guosheng 已提交
74 75 76 77
      }
    }

    detail::backward_reset_grad(detail::backward::gru_resetGrad<T>(), value,
G
guosheng 已提交
78
                                grad, frame_size, batch_size, active_gate);
G
guosheng 已提交
79

G
guosheng 已提交
80
    if (grad.prev_out_grad && value.prev_out_value) {
Q
QI JUN 已提交
81
      math::gemm<platform::CPUDeviceContext, T>(
G
guosheng 已提交
82 83 84
          context, false, true, batch_size, frame_size, frame_size * 2, 1,
          grad.gate_grad, frame_size * 3, value.gate_weight, frame_size * 2, 1,
          grad.prev_out_grad, frame_size);
G
guosheng 已提交
85

G
guosheng 已提交
86
      if (grad.gate_weight_grad) {
Q
QI JUN 已提交
87
        math::gemm<platform::CPUDeviceContext, T>(
G
guosheng 已提交
88 89 90
            context, true, false, frame_size, frame_size * 2, batch_size, 1,
            value.prev_out_value, frame_size, grad.gate_grad, frame_size * 3, 1,
            grad.gate_weight_grad, frame_size * 2);
G
guosheng 已提交
91 92 93 94 95 96
      }
    }
#endif
  }
};

Q
QI JUN 已提交
97 98 99 100
template struct GRUUnitFunctor<platform::CPUDeviceContext, float>;
template struct GRUUnitFunctor<platform::CPUDeviceContext, double>;
template struct GRUUnitGradFunctor<platform::CPUDeviceContext, float>;
template struct GRUUnitGradFunctor<platform::CPUDeviceContext, double>;
G
guosheng 已提交
101 102 103 104

}  // namespace math
}  // namespace operators
}  // namespace paddle