test_histogram_op.py 5.6 KB
Newer Older
Q
Qi Li 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

Q
Qi Li 已提交
17
import numpy as np
18 19
from op_test import OpTest

Q
Qi Li 已提交
20 21 22
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
H
hong 已提交
23
from paddle.fluid.framework import _test_eager_guard
Q
Qi Li 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40


class TestHistogramOpAPI(unittest.TestCase):
    """Test histogram api."""

    def test_static_graph(self):
        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            inputs = fluid.data(name='input', dtype='int64', shape=[2, 3])
            output = paddle.histogram(inputs, bins=5, min=1, max=5)
            place = fluid.CPUPlace()
            if fluid.core.is_compiled_with_cuda():
                place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            exe.run(startup_program)
            img = np.array([[2, 4, 2], [2, 5, 4]]).astype(np.int64)
41 42 43
            res = exe.run(
                train_program, feed={'input': img}, fetch_list=[output]
            )
Q
Qi Li 已提交
44 45 46 47
            actual = np.array(res[0])
            expected = np.array([0, 3, 0, 2, 1]).astype(np.int64)
            self.assertTrue(
                (actual == expected).all(),
48 49
                msg='histogram output is wrong, out =' + str(actual),
            )
Q
Qi Li 已提交
50 51 52 53 54 55 56 57 58

    def test_dygraph(self):
        with fluid.dygraph.guard():
            inputs_np = np.array([[2, 4, 2], [2, 5, 4]]).astype(np.int64)
            inputs = fluid.dygraph.to_variable(inputs_np)
            actual = paddle.histogram(inputs, bins=5, min=1, max=5)
            expected = np.array([0, 3, 0, 2, 1]).astype(np.int64)
            self.assertTrue(
                (actual.numpy() == expected).all(),
59 60
                msg='histogram output is wrong, out =' + str(actual.numpy()),
            )
Q
Qi Li 已提交
61

H
hong 已提交
62 63 64 65
            with _test_eager_guard():
                inputs_np = np.array([[2, 4, 2], [2, 5, 4]]).astype(np.int64)
                inputs = paddle.to_tensor(inputs_np)
                actual = paddle.histogram(inputs, bins=5, min=1, max=5)
66 67 68 69 70
                self.assertTrue(
                    (actual.numpy() == expected).all(),
                    msg='histogram output is wrong, out ='
                    + str(actual.numpy()),
                )
H
hong 已提交
71

Q
Qi Li 已提交
72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
class TestHistogramOpError(unittest.TestCase):
    """Test histogram op error."""

    def run_network(self, net_func):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            net_func()
            exe = fluid.Executor()
            exe.run(main_program)

    def test_bins_error(self):
        """Test bins should be greater than or equal to 1."""

        def net_func():
88 89 90
            input_value = paddle.fluid.layers.fill_constant(
                shape=[3, 4], dtype='float32', value=3.0
            )
91 92
            paddle.histogram(input=input_value, bins=-1, min=1, max=5)

93
        with self.assertRaises(ValueError):
94 95 96 97 98 99
            self.run_network(net_func)

    def test_min_max_error(self):
        """Test max must be larger or equal to min."""

        def net_func():
100 101 102
            input_value = paddle.fluid.layers.fill_constant(
                shape=[3, 4], dtype='float32', value=3.0
            )
103 104
            paddle.histogram(input=input_value, bins=1, min=5, max=1)

105
        with self.assertRaises(ValueError):
106 107 108 109 110 111
            self.run_network(net_func)

    def test_min_max_range_error(self):
        """Test range of min, max is not finite"""

        def net_func():
112 113 114
            input_value = paddle.fluid.layers.fill_constant(
                shape=[3, 4], dtype='float32', value=3.0
            )
115 116
            paddle.histogram(input=input_value, bins=1, min=-np.inf, max=5)

117
        with self.assertRaises(TypeError):
118 119 120 121 122
            self.run_network(net_func)

    def test_type_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
123 124 125
            self.assertRaises(
                TypeError, paddle.histogram, 1, bins=5, min=1, max=5
            )
126 127
            # The input type must be 'int32', 'int64', 'float32', 'float64'
            x_bool = fluid.data(name='x_bool', shape=[4, 3], dtype='bool')
128 129 130
            self.assertRaises(
                TypeError, paddle.histogram, x_bool, bins=5, min=1, max=5
            )
131 132


Q
Qi Li 已提交
133 134 135 136
class TestHistogramOp(OpTest):
    def setUp(self):
        self.op_type = "histogram"
        self.init_test_case()
137
        np_input = np.random.uniform(low=0.0, high=20.0, size=self.in_shape)
H
hong 已提交
138
        self.python_api = paddle.histogram
Q
Qi Li 已提交
139 140
        self.inputs = {"X": np_input}
        self.init_attrs()
141 142 143
        Out, _ = np.histogram(
            np_input, bins=self.bins, range=(self.min, self.max)
        )
Q
Qi Li 已提交
144 145 146 147 148 149 150 151 152 153 154 155
        self.outputs = {"Out": Out.astype(np.int64)}

    def init_test_case(self):
        self.in_shape = (10, 12)
        self.bins = 5
        self.min = 1
        self.max = 5

    def init_attrs(self):
        self.attrs = {"bins": self.bins, "min": self.min, "max": self.max}

    def test_check_output(self):
H
hong 已提交
156
        self.check_output(check_eager=True)
Q
Qi Li 已提交
157 158 159


if __name__ == "__main__":
160
    paddle.enable_static()
Q
Qi Li 已提交
161
    unittest.main()