test_histogram_op.py 6.2 KB
Newer Older
Q
Qi Li 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid import Program, program_guard
from op_test import OpTest
H
hong 已提交
24
from paddle.fluid.framework import _test_eager_guard
Q
Qi Li 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60


class TestHistogramOpAPI(unittest.TestCase):
    """Test histogram api."""

    def test_static_graph(self):
        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            inputs = fluid.data(name='input', dtype='int64', shape=[2, 3])
            output = paddle.histogram(inputs, bins=5, min=1, max=5)
            place = fluid.CPUPlace()
            if fluid.core.is_compiled_with_cuda():
                place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            exe.run(startup_program)
            img = np.array([[2, 4, 2], [2, 5, 4]]).astype(np.int64)
            res = exe.run(train_program,
                          feed={'input': img},
                          fetch_list=[output])
            actual = np.array(res[0])
            expected = np.array([0, 3, 0, 2, 1]).astype(np.int64)
            self.assertTrue(
                (actual == expected).all(),
                msg='histogram output is wrong, out =' + str(actual))

    def test_dygraph(self):
        with fluid.dygraph.guard():
            inputs_np = np.array([[2, 4, 2], [2, 5, 4]]).astype(np.int64)
            inputs = fluid.dygraph.to_variable(inputs_np)
            actual = paddle.histogram(inputs, bins=5, min=1, max=5)
            expected = np.array([0, 3, 0, 2, 1]).astype(np.int64)
            self.assertTrue(
                (actual.numpy() == expected).all(),
                msg='histogram output is wrong, out =' + str(actual.numpy()))

H
hong 已提交
61 62 63 64
            with _test_eager_guard():
                inputs_np = np.array([[2, 4, 2], [2, 5, 4]]).astype(np.int64)
                inputs = paddle.to_tensor(inputs_np)
                actual = paddle.histogram(inputs, bins=5, min=1, max=5)
65 66 67
                self.assertTrue((actual.numpy() == expected).all(),
                                msg='histogram output is wrong, out =' +
                                str(actual.numpy()))
H
hong 已提交
68

Q
Qi Li 已提交
69

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
class TestHistogramOpError(unittest.TestCase):
    """Test histogram op error."""

    def run_network(self, net_func):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            net_func()
            exe = fluid.Executor()
            exe.run(main_program)

    def test_bins_error(self):
        """Test bins should be greater than or equal to 1."""

        def net_func():
85 86 87
            input_value = paddle.fluid.layers.fill_constant(shape=[3, 4],
                                                            dtype='float32',
                                                            value=3.0)
88 89
            paddle.histogram(input=input_value, bins=-1, min=1, max=5)

90
        with self.assertRaises(IndexError):
91 92 93 94 95 96
            self.run_network(net_func)

    def test_min_max_error(self):
        """Test max must be larger or equal to min."""

        def net_func():
97 98 99
            input_value = paddle.fluid.layers.fill_constant(shape=[3, 4],
                                                            dtype='float32',
                                                            value=3.0)
100 101
            paddle.histogram(input=input_value, bins=1, min=5, max=1)

102
        with self.assertRaises(ValueError):
103 104 105 106 107 108
            self.run_network(net_func)

    def test_min_max_range_error(self):
        """Test range of min, max is not finite"""

        def net_func():
109 110 111
            input_value = paddle.fluid.layers.fill_constant(shape=[3, 4],
                                                            dtype='float32',
                                                            value=3.0)
112 113
            paddle.histogram(input=input_value, bins=1, min=-np.inf, max=5)

114
        with self.assertRaises(ValueError):
115 116 117 118 119
            self.run_network(net_func)

    def test_type_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
120 121 122 123 124 125
            self.assertRaises(TypeError,
                              paddle.histogram,
                              1,
                              bins=5,
                              min=1,
                              max=5)
126 127
            # The input type must be 'int32', 'int64', 'float32', 'float64'
            x_bool = fluid.data(name='x_bool', shape=[4, 3], dtype='bool')
128 129 130 131 132 133
            self.assertRaises(TypeError,
                              paddle.histogram,
                              x_bool,
                              bins=5,
                              min=1,
                              max=5)
134 135


Q
Qi Li 已提交
136
class TestHistogramOp(OpTest):
137

Q
Qi Li 已提交
138 139 140
    def setUp(self):
        self.op_type = "histogram"
        self.init_test_case()
141
        np_input = np.random.uniform(low=0.0, high=20.0, size=self.in_shape)
H
hong 已提交
142
        self.python_api = paddle.histogram
Q
Qi Li 已提交
143 144
        self.inputs = {"X": np_input}
        self.init_attrs()
145 146 147
        Out, _ = np.histogram(np_input,
                              bins=self.bins,
                              range=(self.min, self.max))
Q
Qi Li 已提交
148 149 150 151 152 153 154 155 156 157 158 159
        self.outputs = {"Out": Out.astype(np.int64)}

    def init_test_case(self):
        self.in_shape = (10, 12)
        self.bins = 5
        self.min = 1
        self.max = 5

    def init_attrs(self):
        self.attrs = {"bins": self.bins, "min": self.min, "max": self.max}

    def test_check_output(self):
H
hong 已提交
160
        self.check_output(check_eager=True)
Q
Qi Li 已提交
161 162 163


if __name__ == "__main__":
164
    paddle.enable_static()
Q
Qi Li 已提交
165
    unittest.main()