test_downpoursgd.py 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""Test cases for Downpour."""
15 16 17 18 19 20 21 22 23 24 25

import paddle
import paddle.fluid as fluid
import os
import signal
import subprocess
import time
import unittest
import sys
from op_test import OpTest
from paddle.fluid.trainer_desc import DistMultiTrainer
26
from paddle.fluid.device_worker import DownpourSGD, DownpourSGDOPT
27
from paddle.fluid.incubate.fleet.parameter_server.pslib.node import DownpourWorker, DownpourServer
28 29
from google.protobuf import text_format
import paddle.fluid.incubate.fleet.parameter_server.pslib.ps_pb2 as pslib
30
from paddle.fluid.trainer_factory import TrainerFactory
31

32 33
cache_path = os.path.expanduser('~/.cache/paddle/dataset')

34

35
class TestListenAndServOp(unittest.TestCase):
36
    """This class is Test Listen And ServOp."""
37

38
    def setUp(self):
39 40 41
        """This function is set Up."""
        if not os.path.exists(cache_path):
            os.makedirs(cache_path)
42 43

    def test_device_work_use_cvm(self):
44
        """test device work use_cvm."""
45 46 47 48
        if sys.platform == 'win32' or sys.platform == 'sys.platform':
            pass
        else:
            print(sys.platform)
49 50 51 52 53
            if not os.path.exists('{}/{}'.format(cache_path,
                                                 'fleet_desc.prototxt')):
                cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt -P {}/".format(
                    cache_path)
                os.system(cmd)
54
            x = fluid.layers.data(name='x', shape=[1], dtype='int64')
55 56 57
            x_emb = fluid.layers.embedding(input=x,
                                           size=[1, 2],
                                           is_distributed=True)
58 59 60
            y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
61
            avg_cost = paddle.mean(cost)
62 63

            ps_param = pslib.PSParameter()
64
            with open("{}/fleet_desc.prototxt".format(cache_path)) as f:
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
                text_format.Merge(f.read(), ps_param)
            fleet_desc = ps_param
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            opt_info = {}
            main_program = fluid.default_main_program()
            program_id = str(id(avg_cost.block.program))
            program_configs = {}
            program_configs[program_id] = {
                "pull_sparse": [0],
                "push_sparse": [0]
            }
            program_configs[program_id]["pull_dense"] = [1]
            program_configs[program_id]["push_dense"] = [1]

            worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
            opt_info["program_configs"] = program_configs
            opt_info["trainer"] = "DistMultiTrainer"
            opt_info["device_worker"] = "DownpourSGD"
            opt_info["optimizer"] = "DownpourSGD"
            opt_info["fleet_desc"] = ps_param
            opt_info["worker_skipped_ops"] = worker_skipped_ops
            opt_info["use_cvm"] = True
            opt_info["scale_datanorm"] = -1
            opt_info["dump_slot"] = False
91
            opt_info["stat_var_names"] = []
92
            worker = DownpourWorker(None)
93 94
            server = DownpourServer()
            server.add_sparse_table(0, {})
95 96
            worker.get_desc().CopyFrom(ps_param.trainer_param[0])
            opt_info["program_id_to_worker"] = {program_id: worker}
97 98

            main_program._fleet_opt = opt_info
99
            trainer = TrainerFactory()._create_trainer(main_program._fleet_opt)
100 101 102 103
            trainer._set_program(main_program)
            trainer._gen_trainer_desc()

    def test_device_work(self):
104
        """This function is test devicve worker."""
105 106 107 108
        if sys.platform == 'win32' or sys.platform == 'sys.platform':
            pass
        else:
            print(sys.platform)
109 110 111 112 113
            if not os.path.exists('{}/{}'.format(cache_path,
                                                 'fleet_desc.prototxt')):
                cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt -P {}/".format(
                    cache_path)
                os.system(cmd)
114
            x = fluid.layers.data(name='x', shape=[1], dtype='int64')
115 116 117
            x_emb = fluid.layers.embedding(input=x,
                                           size=[1, 2],
                                           is_distributed=True)
118 119 120
            y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
121
            avg_cost = paddle.mean(cost)
122 123

            ps_param = pslib.PSParameter()
124
            with open("{}/fleet_desc.prototxt".format(cache_path)) as f:
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
                text_format.Merge(f.read(), ps_param)
            fleet_desc = ps_param
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            opt_info = {}
            main_program = fluid.default_main_program()
            program_id = str(id(avg_cost.block.program))
            program_configs = {}
            program_configs[program_id] = {
                "pull_sparse": [0],
                "push_sparse": [0]
            }
            program_configs[program_id]["pull_dense"] = [1]
            program_configs[program_id]["push_dense"] = [1]

            worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
            opt_info["program_configs"] = program_configs
            opt_info["trainer"] = "DistMultiTrainer"
            opt_info["device_worker"] = "DownpourSGD"
            opt_info["optimizer"] = "DownpourSGD"
            opt_info["fleet_desc"] = ps_param
            opt_info["worker_skipped_ops"] = worker_skipped_ops
            opt_info["use_cvm"] = False
            opt_info["scale_datanorm"] = -1
            opt_info["dump_slot"] = False
151
            opt_info["stat_var_names"] = []
152 153 154
            worker = DownpourWorker(None)
            worker.get_desc().CopyFrom(ps_param.trainer_param[0])
            opt_info["program_id_to_worker"] = {program_id: worker}
155 156

            main_program._fleet_opt = opt_info
157
            trainer = TrainerFactory()._create_trainer(main_program._fleet_opt)
158 159 160
            trainer._set_program(main_program)
            trainer._gen_trainer_desc()

161
    def test_downpour_opt_work(self):
162
        """This function is test devicve worker."""
163 164 165 166
        if sys.platform == 'win32' or sys.platform == 'sys.platform':
            pass
        else:
            print(sys.platform)
167 168 169 170 171
            if not os.path.exists('{}/{}'.format(cache_path,
                                                 'fleet_desc.prototxt')):
                cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt -P {}/".format(
                    cache_path)
                os.system(cmd)
172
            x = fluid.layers.data(name='x', shape=[1], dtype='int64')
173 174 175
            x_emb = fluid.layers.embedding(input=x,
                                           size=[1, 2],
                                           is_distributed=True)
176 177 178
            y_predict = fluid.layers.fc(input=x_emb, size=1, act=None)
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
179
            avg_cost = paddle.mean(cost)
180 181

            ps_param = pslib.PSParameter()
182
            with open("{}/fleet_desc.prototxt".format(cache_path)) as f:
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
                text_format.Merge(f.read(), ps_param)
            fleet_desc = ps_param
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            opt_info = {}
            main_program = fluid.default_main_program()
            program_id = str(id(avg_cost.block.program))
            program_configs = {}
            program_configs[program_id] = {
                "pull_sparse": [0],
                "push_sparse": [0]
            }
            program_configs[program_id]["pull_dense"] = [1]
            program_configs[program_id]["push_dense"] = [1]

            worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
            opt_info["program_configs"] = program_configs
            opt_info["trainer"] = "DistMultiTrainer"
            opt_info["device_worker"] = "DownpourSGDOPT"
            opt_info["optimizer"] = "DownpourSGD"
            opt_info["fleet_desc"] = ps_param
            opt_info["worker_skipped_ops"] = worker_skipped_ops
            opt_info["use_cvm"] = False
            opt_info["scale_datanorm"] = -1
            opt_info["dump_slot"] = False
            opt_info["stat_var_names"] = []
            worker = DownpourWorker(None)
            worker.get_desc().CopyFrom(ps_param.trainer_param[0])
            opt_info["program_id_to_worker"] = {program_id: worker}

            main_program._fleet_opt = opt_info
215
            trainer = TrainerFactory()._create_trainer(main_program._fleet_opt)
216 217 218
            trainer._set_program(main_program)
            trainer._gen_trainer_desc()

219 220 221

if __name__ == "__main__":
    unittest.main()