test_cross_entropy_loss.py 71.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
import numpy as np
import unittest
19 20
from test_softmax_op import stable_softmax
from test_softmax_with_cross_entropy_op import cross_entropy
R
root 已提交
21
from paddle.fluid import Program, program_guard
22
from paddle.fluid.framework import _test_eager_guard
23 24


25
def log_softmax(x, axis=-1):
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
    softmax_out = np.apply_along_axis(stable_softmax, axis, x)
    return np.log(softmax_out)


def cross_entropy_loss_1d(input,
                          label,
                          weight=None,
                          reduction='mean',
                          ignore_index=-100):
    log_softmax_out = log_softmax(input)
    input_shape = log_softmax_out.shape
    N = input_shape[0]
    C = input_shape[1]
    out = np.zeros_like(label).astype(np.float64)
    total_weight = 0
41 42
    ###1. compute softmax cross_entropy (with weight)
    ###   Note: only support hard labels.
43 44 45 46 47 48 49 50
    for i in range(N):
        cur_target = label[i]
        if cur_target == ignore_index:
            out[i] = 0
            continue
        cur_weight = weight[cur_target] if weight is not None else 1
        total_weight += cur_weight
        out[i] = -log_softmax_out[i][cur_target] * cur_weight
51

H
HydrogenSulfate 已提交
52
    ###2. deal with reduction
53 54 55
    if reduction == 'sum':
        return np.sum(out), np.array([total_weight]).astype('float64')
    elif reduction == 'mean':
56 57
        out = out.sum() / total_weight if total_weight != 0 else out.sum()
        return out, np.array([total_weight]).astype('float64')
58 59 60 61 62 63 64 65 66 67 68 69
    elif reduction == 'none':
        return out


def cross_entropy_loss_2d(input,
                          label,
                          weight=None,
                          reduction='mean',
                          ignore_index=-100):
    log_softmax_out = log_softmax(input)
    input_shape = log_softmax_out.shape
    N = input_shape[0]
70 71 72
    H = input_shape[1]
    W = input_shape[2]

73 74 75 76 77 78 79 80 81 82 83
    out = np.zeros_like(label).astype(np.float64)
    total_weight = 0
    for i in range(N):
        for h in range(H):
            for w in range(W):
                cur_target = label[i][h][w]
                if cur_target == ignore_index:
                    out[i][h][w] = 0
                    continue
                cur_weight = weight[cur_target] if weight is not None else 1
                total_weight += cur_weight
84 85
                out[i][h][
                    w] = -log_softmax_out[i][h][w][cur_target] * cur_weight
86 87 88
    if reduction == 'sum':
        return np.sum(out), np.array([total_weight]).astype('float64')
    elif reduction == 'mean':
89 90
        out = out.sum() / total_weight if total_weight != 0 else out.sum()
        return out, np.array([total_weight]).astype('float64')
91 92 93 94
    elif reduction == 'none':
        return out


95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
def cross_entropy_soft(softmax,
                       label,
                       axis,
                       N,
                       weight=None,
                       reduction='mean',
                       ignore_index=-100):
    #1.loss
    loss = cross_entropy(
        softmax,
        label,
        True,  #soft_label,
        axis,
        ignore_index)

    if weight is None and reduction == 'none':
        return loss

    #2.weight
    weighted_loss = loss
    total_weight = N  #for weight is None
    if weight is not None:
        weighted_loss = np.zeros_like(loss).astype(np.float64)
        total_weight = 0
        for i in range(N):
            cur_soft_label = label[i]
            cur_weight = np.dot(weight, cur_soft_label)
            total_weight += cur_weight
            weighted_loss[i] = loss[i] * cur_weight

    #3.reduce
    if reduction == 'none':
        return weighted_loss

    elif reduction == 'mean':
        weighted_loss_sum = np.sum(weighted_loss)
        weighted_loss_mean = weighted_loss_sum / total_weight
        return weighted_loss_mean

    else:
        weighted_loss_sum = np.sum(weighted_loss)
        return weighted_loss_sum


def cross_entropy_soft_2d(softmax,
                          label,
                          axis,
                          N,
                          H,
                          W,
                          weight=None,
                          reduction='mean',
                          ignore_index=-100):
    #1.loss
    loss = cross_entropy(
        softmax,
        label,
        True,  #soft_label,
        axis,
        ignore_index)

    if weight is None and reduction == 'none':
        return loss

    #2.weight
    weighted_loss = loss
    total_weight = N  #for weight is None
    if weight is not None:
        weighted_loss = np.zeros_like(loss).astype(np.float64)
        total_weight = 0
        for i in range(N):
            for h in range(H):
                for w in range(W):
                    cur_soft_label = label[i][h][w]
                    cur_weight = np.dot(weight, cur_soft_label)
                    total_weight += cur_weight
                    weighted_loss[i][h][w] = loss[i][h][w] * cur_weight

    #3.reduce
    if reduction == 'none':
        return weighted_loss

    elif reduction == 'mean':
        weighted_loss_sum = np.sum(weighted_loss)
        weighted_loss_mean = weighted_loss_sum / total_weight
        return weighted_loss_mean

    else:
        weighted_loss_sum = np.sum(weighted_loss)
        return weighted_loss_sum


187
class CrossEntropyLoss(unittest.TestCase):
188

R
ronnywang 已提交
189 190 191
    def setUp(self):
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
192 193 194 195 196

    ###test for deprecated softmax_with_cross_entropy
    def test_softmax_with_cross_entropy(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
197 198
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

215 216 217 218 219 220 221
        expected = cross_entropy_soft(softmax,
                                      self.labels,
                                      self.axis,
                                      self.N,
                                      weight=self.weight,
                                      reduction=self.reduction,
                                      ignore_index=self.ignore_index)
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

        paddle.set_device("cpu")

        paddle.disable_static()
        paddle_loss_swce = paddle.nn.functional.softmax_with_cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis)

        paddle_loss_ce = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight)
            if self.weight is not None else None,
            reduction=self.reduction)

241 242 243 244
        np.testing.assert_allclose(paddle_loss_swce.numpy(),
                                   expected,
                                   rtol=1e-05)
        np.testing.assert_allclose(paddle_loss_ce.numpy(), expected, rtol=1e-05)
245 246 247 248 249 250

    ###soft_label test start
    ###soft_label test 1
    def test_cross_entropy_loss_soft_1d(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
251 252
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

269 270 271 272 273 274 275
        expected = cross_entropy_soft(softmax,
                                      self.labels,
                                      self.axis,
                                      self.N,
                                      weight=self.weight,
                                      reduction=self.reduction,
                                      ignore_index=self.ignore_index)
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

        paddle.set_device("cpu")

        #2. dygraph
        paddle.disable_static()
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight)
            if self.weight is not None else None,
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
295 296
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
297
        with fluid.program_guard(prog, startup_prog):
298 299 300 301 302 303
            input = fluid.data(name='input',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
            label = fluid.data(name='label',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

319 320
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
321 322 323 324 325

    ###soft_label test 2
    def test_cross_entropy_loss_soft_1d_weight(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
326 327
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'none'
        self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype)
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        if self.soft_label:
            self.labels = np.random.uniform(0.1, 1.0,
                                            self.shape).astype(self.dtype)
            self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)
        else:
            axis_dim = self.shape[self.axis]
            self.shape[self.axis] = 1
348 349 350 351
            self.labels = np.random.randint(0,
                                            axis_dim,
                                            self.shape,
                                            dtype="int64")
352 353

        #1. numpy
354 355 356 357 358 359 360
        expected = cross_entropy_soft(softmax,
                                      self.labels,
                                      self.axis,
                                      self.N,
                                      weight=self.weight,
                                      reduction=self.reduction,
                                      ignore_index=self.ignore_index)
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

        paddle.set_device("cpu")

        #2. dygraph
        paddle.disable_static()
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight),
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        # 3.static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
379 380
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
381
        with fluid.program_guard(prog, startup_prog):
382 383 384 385 386 387
            input = fluid.data(name='input',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
            label = fluid.data(name='label',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
R
ronnywang 已提交
388
            weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype)
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                     "weight": self.weight
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

405 406
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
407 408 409 410 411

    ###soft_label test 3
    def test_cross_entropy_loss_soft_1d_mean(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
412 413
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'mean'
        self.weight = None
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
431 432 433 434 435 436 437
        expected = cross_entropy_soft(softmax,
                                      self.labels,
                                      self.axis,
                                      self.N,
                                      weight=self.weight,
                                      reduction=self.reduction,
                                      ignore_index=self.ignore_index)
438 439 440

        paddle.set_device("cpu")

H
HydrogenSulfate 已提交
441
        #2 dygraph
442 443 444 445 446 447 448 449 450 451 452 453 454 455
        paddle.disable_static()
        paddle_loss_mean = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=self.weight,
            reduction=self.reduction)
        dy_ret_value = paddle_loss_mean.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
456 457
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
458
        with fluid.program_guard(prog, startup_prog):
459 460 461 462 463 464
            input = fluid.data(name='input',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
            label = fluid.data(name='label',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
465 466 467 468 469 470

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
471 472 473 474 475 476
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels
                                 },
                                 fetch_list=[ret])
477 478 479
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

480 481
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
482 483 484 485 486

    ###soft_label test 4
    def test_cross_entropy_loss_soft_1d_weight_mean(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
487 488
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 4
        self.C = 3
        self.shape = [self.N, self.C]
        self.use_softmax = True
        self.reduction = 'mean'
        self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype)
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
506 507 508 509 510 511 512
        expected = cross_entropy_soft(softmax,
                                      self.labels,
                                      self.axis,
                                      self.N,
                                      weight=self.weight,
                                      reduction=self.reduction,
                                      ignore_index=self.ignore_index)
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530

        paddle.set_device("cpu")
        paddle.disable_static()

        #2. dygraph
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight),
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
531 532
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
533
        with fluid.program_guard(prog, startup_prog):
534 535 536 537 538 539
            input = fluid.data(name='input',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
            label = fluid.data(name='label',
                               shape=[self.N, self.C],
                               dtype=self.dtype)
R
ronnywang 已提交
540
            weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype)
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                     "weight": self.weight
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

556 557
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
558 559 560 561

    ###soft_label test 5
    def test_cross_entropy_loss_soft_2d(self):

H
hong 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
        def inner_cross_entropy_loss_soft_2d(soft_label):
            self.numeric_stable_mode = False
            self.soft_label = soft_label
            self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
            ) else 'float64'
            self.axis = -1
            self.ignore_index = -100  #should not be changed
            self.N = 3
            self.H = 2
            self.W = 2
            self.C = 5
            self.shape = [self.N, self.H, self.W, self.C]
            self.use_softmax = True
            self.reduction = 'none'
            self.weight = None
            self.logits = getattr(
                self, "logits",
                np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
            softmax = np.apply_along_axis(stable_softmax, self.axis,
                                          self.logits)
582

H
hong 已提交
583 584 585
            self.labels = np.random.uniform(0.1, 1.0,
                                            self.shape).astype(self.dtype)
            self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)
586

H
hong 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
            #1. numpy
            expected = cross_entropy_soft_2d(softmax,
                                             self.labels,
                                             self.axis,
                                             self.N,
                                             self.H,
                                             self.W,
                                             weight=self.weight,
                                             reduction=self.reduction,
                                             ignore_index=self.ignore_index)

            paddle.set_device("cpu")
            paddle.disable_static()

            #2. dygraph
            paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
                fluid.dygraph.to_variable(self.logits),
                fluid.dygraph.to_variable(self.labels),
                soft_label=True,
                axis=self.axis,
                weight=fluid.dygraph.to_variable(self.weight)
                if self.weight is not None else None,
                reduction=self.reduction)
            dy_ret_value = paddle_loss_none_weight.numpy()

            #3. static
            paddle.enable_static()
            prog = fluid.Program()
            startup_prog = fluid.Program()
            place = fluid.CUDAPlace(
                0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
            with fluid.program_guard(prog, startup_prog):
                input = fluid.data(name='input',
                                   shape=[self.N, self.H, self.W, self.C],
                                   dtype=self.dtype)
                label = fluid.data(name='label',
                                   shape=[self.N, self.H, self.W, self.C],
                                   dtype=self.dtype)

                cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                    reduction=self.reduction, soft_label=True)
                ret = cross_entropy_loss(input, label)
                exe = fluid.Executor(place)
                static_ret = exe.run(prog,
                                     feed={
                                         'input': self.logits,
                                         'label': self.labels,
                                     },
                                     fetch_list=[ret])
                self.assertIsNotNone(static_ret)
            paddle.disable_static()

            np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
            np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
            np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)

        inner_cross_entropy_loss_soft_2d(True)
        inner_cross_entropy_loss_soft_2d(False)
645 646 647 648 649

    ###soft_label test 6
    def test_cross_entropy_loss_soft_2d_weight_mean(self):
        self.numeric_stable_mode = False
        self.soft_label = True
R
ronnywang 已提交
650 651
        self.dtype = 'float32' if fluid.core.is_compiled_with_rocm(
        ) else 'float64'
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
        self.axis = -1
        self.ignore_index = -100  #should not be changed
        self.N = 3
        self.H = 2
        self.W = 2
        self.C = 5
        self.shape = [self.N, self.H, self.W, self.C]
        self.use_softmax = True
        self.reduction = 'mean'
        self.weight = np.random.uniform(0.1, 1.0, self.C).astype(self.dtype)
        self.logits = getattr(
            self, "logits",
            np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype))
        softmax = np.apply_along_axis(stable_softmax, self.axis, self.logits)

        self.labels = np.random.uniform(0.1, 1.0, self.shape).astype(self.dtype)
        self.labels /= np.sum(self.labels, axis=self.axis, keepdims=True)

        #1. numpy
671 672 673 674 675 676 677 678 679
        expected = cross_entropy_soft_2d(softmax,
                                         self.labels,
                                         self.axis,
                                         self.N,
                                         self.H,
                                         self.W,
                                         weight=self.weight,
                                         reduction=self.reduction,
                                         ignore_index=self.ignore_index)
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697

        paddle.set_device("cpu")
        paddle.disable_static()

        #2. dygraph
        paddle_loss_none_weight = paddle.nn.functional.cross_entropy(
            fluid.dygraph.to_variable(self.logits),
            fluid.dygraph.to_variable(self.labels),
            soft_label=True,
            axis=self.axis,
            weight=fluid.dygraph.to_variable(self.weight),
            reduction=self.reduction)
        dy_ret_value = paddle_loss_none_weight.numpy()

        #3. static
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
698 699
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
700
        with fluid.program_guard(prog, startup_prog):
701 702 703 704 705 706
            input = fluid.data(name='input',
                               shape=[self.N, self.H, self.W, self.C],
                               dtype=self.dtype)
            label = fluid.data(name='label',
                               shape=[self.N, self.H, self.W, self.C],
                               dtype=self.dtype)
R
ronnywang 已提交
707
            weight = fluid.data(name='weight', shape=[self.C], dtype=self.dtype)
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722

            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=self.reduction, soft_label=True)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': self.logits,
                                     'label': self.labels,
                                     "weight": self.weight
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        paddle.disable_static()

723 724 725
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
726 727 728

    ###soft_label test end

729
    def test_cross_entropy_loss_1d_with_mean_ignore(self):
R
ronnywang 已提交
730
        input_np = np.random.random([2, 4]).astype(self.dtype)
731 732 733 734
        label_np = np.random.randint(0, 4, size=(2)).astype(np.int64)
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
735 736
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
737
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
738
            input = fluid.data(name='input', shape=[2, 4], dtype=self.dtype)
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
            label = fluid.data(name='label', shape=[2], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(ignore_index=0)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        expected = cross_entropy_loss_1d(input_np, label_np)[0]

        with fluid.dygraph.guard():
754 755 756 757
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(axis=1,
                                                                 ignore_index=0)
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
758 759 760
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, ignore_index=0)[0]
761 762 763
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
764

765 766 767 768 769 770 771 772
    def test_cross_entropy_loss_1d_with_mean_ignore_negative(self):
        N = 100
        C = 200
        input_np = np.random.random([N, C]).astype(self.dtype)
        label_np = -np.ones((N)).astype(np.int64)
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
773 774
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
        with fluid.program_guard(prog, startup_prog):
            input = fluid.data(name='input', shape=[N, C], dtype=self.dtype)
            label = fluid.data(name='label', shape=[N], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                ignore_index=-1)
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                axis=1, ignore_index=-1)
793 794
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
795 796 797 798
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, ignore_index=-1)[0]

799 800 801
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
802

803
    def test_cross_entropy_loss_1d_with_weight_mean_ignore(self):
804 805
        N = 100
        C = 200
R
ronnywang 已提交
806
        input_np = np.random.random([N, C]).astype(self.dtype)
807
        label_np = np.random.randint(0, C, size=(N)).astype(np.int64)
R
ronnywang 已提交
808
        weight_np = np.random.random([C]).astype(self.dtype)
809 810 811
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
812 813
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
814
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
815
            input = fluid.data(name='input', shape=[N, C], dtype=self.dtype)
816
            label = fluid.data(name='label', shape=[N], dtype='int64')
817 818 819 820
            weight = fluid.data(name='weight', shape=[C],
                                dtype=self.dtype)  #weight for each class
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight,
                                                                 ignore_index=0)
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np),
                axis=1,
                ignore_index=0)
838 839
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
840 841
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
842 843 844 845
        expected = cross_entropy_loss_1d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         ignore_index=0)[0]
846

847 848 849
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
850

H
HydrogenSulfate 已提交
851 852 853 854 855 856 857 858 859 860
    def test_cross_entropy_loss_1d_with_weight_mean_ignore_exceedlabel(self):
        N = 100
        C = 200
        input_np = np.random.random([N, C]).astype(self.dtype)
        label_np = np.random.randint(0, C, size=(N)).astype(np.int64)
        label_np[0] = 255
        weight_np = np.random.random([C]).astype(self.dtype)

        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
861
                weight=fluid.dygraph.to_variable(weight_np), ignore_index=255)
862 863
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
H
HydrogenSulfate 已提交
864 865
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
866 867 868 869
        expected = cross_entropy_loss_1d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         ignore_index=255)[0]
H
HydrogenSulfate 已提交
870

871
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
H
HydrogenSulfate 已提交
872

873
    def test_cross_entropy_loss_1d_with_weight_mean(self):
R
ronnywang 已提交
874
        input_np = np.random.random([2, 4]).astype(self.dtype)
875
        label_np = np.random.randint(0, 4, size=(2)).astype(np.int64)
R
ronnywang 已提交
876
        weight_np = np.random.random([4]).astype(self.dtype)  #shape:C
877
        paddle.enable_static()
878 879
        prog = fluid.Program()
        startup_prog = fluid.Program()
880 881
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
882
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
883
            input = fluid.data(name='input', shape=[2, 4], dtype=self.dtype)
884
            label = fluid.data(name='label', shape=[2], dtype='int64')
885 886
            weight = fluid.data(name='weight', shape=[4],
                                dtype=self.dtype)  #weight for each class
887 888 889 890 891 892 893 894 895 896 897 898
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight)
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
899 900
        expected = cross_entropy_loss_1d(input_np, label_np,
                                         weight=weight_np)[0]
901

902 903
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
904
                weight=fluid.dygraph.to_variable(weight_np), axis=1)
905 906
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
907 908
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
909 910
        expected = cross_entropy_loss_1d(input_np, label_np,
                                         weight=weight_np)[0]
911 912 913
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
914

915
    def test_cross_entropy_loss_1d_with_weight_sum(self):
R
ronnywang 已提交
916
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
917
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
R
ronnywang 已提交
918
        weight_np = np.random.random([200]).astype(self.dtype)  #C
919
        paddle.enable_static()
920 921
        prog = fluid.Program()
        startup_prog = fluid.Program()
922 923
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
924
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
925
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
926
            label = fluid.data(name='label', shape=[100], dtype='int64')
R
ronnywang 已提交
927
            weight = fluid.data(name='weight', shape=[200], dtype=self.dtype)
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='sum')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='sum')
944 945
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
946 947
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
948 949 950 951
        expected = cross_entropy_loss_1d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         reduction='sum')[0]
952 953 954
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
955

956
    def test_cross_entropy_loss_1d_with_weight_none(self):
R
ronnywang 已提交
957
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
958
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
R
ronnywang 已提交
959
        weight_np = np.random.random([200]).astype(self.dtype)  #C
960

961
        paddle.enable_static()
962 963
        prog = fluid.Program()
        startup_prog = fluid.Program()
964 965
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
966
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
967
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
968
            label = fluid.data(name='label', shape=[100], dtype='int64')
R
ronnywang 已提交
969
            weight = fluid.data(name='weight', shape=[200], dtype=self.dtype)
970

971 972 973 974 975 976 977 978 979 980 981 982
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='none')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
983
            static_ret = np.squeeze(static_ret)
984 985 986 987
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='none')
988 989
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
990
            dy_ret_value = dy_ret.numpy()
991
            dy_ret_value = np.squeeze(dy_ret_value)
992
            self.assertIsNotNone(dy_ret_value)
993 994 995 996
        expected = cross_entropy_loss_1d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         reduction='none')
997 998 999
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1000 1001

    def test_cross_entropy_loss_1d_with_weight_none_func(self):
R
ronnywang 已提交
1002
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
1003
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N
R
ronnywang 已提交
1004
        weight_np = np.random.random([200]).astype(self.dtype)  #C
1005 1006 1007
        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
1008 1009
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1010
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
1011
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1012
            label = fluid.data(name='label', shape=[100], dtype='int64')
R
ronnywang 已提交
1013
            weight = fluid.data(name='weight', shape=[200], dtype=self.dtype)
1014 1015 1016 1017
            ret = paddle.nn.functional.cross_entropy(input,
                                                     label,
                                                     weight=weight,
                                                     reduction='none')
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            static_ret = np.squeeze(static_ret)
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            dy_ret = paddle.nn.functional.cross_entropy(
                fluid.dygraph.to_variable(input_np),
                fluid.dygraph.to_variable(label_np),
                weight=fluid.dygraph.to_variable(weight_np),
                reduction='none')
            dy_ret_value = dy_ret.numpy()
            dy_ret_value = np.squeeze(dy_ret_value)
            self.assertIsNotNone(dy_ret_value)
1038 1039 1040 1041
        expected = cross_entropy_loss_1d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         reduction='none')
1042 1043 1044
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1045 1046

    def test_cross_entropy_loss_1d_mean(self):
R
ronnywang 已提交
1047
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
1048 1049
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
        paddle.enable_static()
1050 1051
        prog = fluid.Program()
        startup_prog = fluid.Program()
1052 1053
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1054
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
1055
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1056 1057 1058 1059 1060
            label = fluid.data(name='label', shape=[100], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss()
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
1061 1062 1063 1064
                                 feed={
                                     'input': input_np,
                                     'label': label_np
                                 },
1065 1066 1067 1068
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss()
1069 1070
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1071 1072 1073
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np)[0]
1074 1075 1076
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1077 1078

    def test_cross_entropy_loss_1d_sum(self):
R
ronnywang 已提交
1079
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
1080 1081
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
        paddle.enable_static()
1082 1083
        prog = fluid.Program()
        startup_prog = fluid.Program()
1084 1085
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1086
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
1087
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1088 1089 1090 1091 1092 1093
            label = fluid.data(name='label', shape=[100], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
1094 1095 1096 1097
                                 feed={
                                     'input': input_np,
                                     'label': label_np
                                 },
1098 1099 1100 1101 1102
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
1103 1104
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1105 1106 1107
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, reduction='sum')[0]
1108 1109 1110
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1111 1112

    def test_cross_entropy_loss_1d_none(self):
R
ronnywang 已提交
1113
        input_np = np.random.random([100, 200]).astype(self.dtype)  #N,C
1114 1115
        label_np = np.random.randint(0, 100, size=(100)).astype(np.int64)  #N,1
        paddle.enable_static()
1116 1117
        prog = fluid.Program()
        startup_prog = fluid.Program()
1118 1119
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1120
        with fluid.program_guard(prog, startup_prog):
R
ronnywang 已提交
1121
            input = fluid.data(name='input', shape=[100, 200], dtype=self.dtype)
1122 1123 1124 1125 1126 1127
            label = fluid.data(name='label', shape=[100], dtype='int64')
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
1128 1129 1130 1131
                                 feed={
                                     'input': input_np,
                                     'label': label_np
                                 },
1132
                                 fetch_list=[ret])
1133
            static_ret = np.squeeze(static_ret)
1134 1135 1136 1137
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
1138 1139
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1140
            dy_ret_value = dy_ret.numpy()
1141
            dy_ret_value = np.squeeze(dy_ret_value)
1142 1143
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_1d(input_np, label_np, reduction='none')
1144 1145 1146
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1147 1148

    def test_cross_entropy_loss_2d_with_weight_none(self):
R
ronnywang 已提交
1149
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1150 1151
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW1
R
ronnywang 已提交
1152
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C
1153 1154

        paddle.enable_static()
1155 1156
        prog = fluid.Program()
        startup_prog = fluid.Program()
1157 1158
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1159
        with fluid.program_guard(prog, startup_prog):
1160 1161 1162
            input = fluid.data(name='input',
                               shape=[2, 2, 2, 3],
                               dtype=self.dtype)
1163
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
R
ronnywang 已提交
1164
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='none')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
1177
            static_ret = np.squeeze(static_ret)
1178 1179 1180 1181
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='none')
1182 1183
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1184
            dy_ret_value = dy_ret.numpy()
1185
            dy_ret_value = np.squeeze(dy_ret_value)
1186
            self.assertIsNotNone(dy_ret_value)
1187 1188 1189 1190
        expected = cross_entropy_loss_2d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         reduction='none')
1191 1192 1193
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1194 1195 1196

    def test_cross_entropy_loss_2d_with_weight_axis_change_mean(self):
        input_np = np.random.random(size=(2, 3, 2, 2)).astype(self.dtype)  #NCHW
1197 1198
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW
1199 1200 1201 1202 1203
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C

        paddle.enable_static()
        prog = fluid.Program()
        startup_prog = fluid.Program()
1204 1205
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1206
        with fluid.program_guard(prog, startup_prog):
1207 1208 1209
            input = fluid.data(name='input',
                               shape=[2, 3, 2, 2],
                               dtype=self.dtype)
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='mean', axis=1)
            # specify the class channels to axis 1
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])

            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
1229 1230 1231
                weight=fluid.dygraph.to_variable(weight_np),
                reduction='mean',
                axis=1)
1232 1233
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1234 1235
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
1236 1237 1238 1239
        expected = cross_entropy_loss_2d(np.transpose(input_np, [0, 2, 3, 1]),
                                         label_np,
                                         weight=weight_np,
                                         reduction='mean')[0]
1240 1241 1242
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1243

H
HydrogenSulfate 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
    def test_cross_entropy_loss_2d_with_weight_mean_ignore_exceedlabel(self):
        N = 4
        C = 3
        H = 512
        W = 512
        input_np = np.random.random([N, H, W, C]).astype(self.dtype)
        label_np = np.random.randint(0, C, size=(N, H, W)).astype(np.int64)
        label_np[0, 0, 0] = 255
        weight_np = np.random.random([C]).astype(self.dtype)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
1255
                weight=fluid.dygraph.to_variable(weight_np), ignore_index=255)
1256 1257
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
H
HydrogenSulfate 已提交
1258 1259
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
1260 1261 1262 1263
        expected = cross_entropy_loss_2d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         ignore_index=255)[0]
1264
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
H
HydrogenSulfate 已提交
1265

1266
    def test_cross_entropy_loss_2d_with_weight_mean(self):
R
ronnywang 已提交
1267
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1268 1269
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW
R
ronnywang 已提交
1270
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C
1271
        paddle.enable_static()
1272 1273
        prog = fluid.Program()
        startup_prog = fluid.Program()
1274 1275
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1276
        with fluid.program_guard(prog, startup_prog):
1277 1278 1279
            input = fluid.data(name='input',
                               shape=[2, 2, 2, 3],
                               dtype=self.dtype)
1280
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
R
ronnywang 已提交
1281
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='mean')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='mean')
1298 1299
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1300 1301
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
1302 1303 1304 1305
        expected = cross_entropy_loss_2d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         reduction='mean')[0]
1306 1307 1308
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1309 1310

    def test_cross_entropy_loss_2d_with_weight_sum(self):
R
ronnywang 已提交
1311
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1312 1313
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW
R
ronnywang 已提交
1314
        weight_np = np.random.random(size=(3, )).astype(self.dtype)  #C
1315 1316
        paddle.enable_static()

1317 1318
        prog = fluid.Program()
        startup_prog = fluid.Program()
1319 1320
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1321
        with fluid.program_guard(prog, startup_prog):
1322 1323 1324
            input = fluid.data(name='input',
                               shape=[2, 2, 2, 3],
                               dtype=self.dtype)
1325
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
R
ronnywang 已提交
1326
            weight = fluid.data(name='weight', shape=[3], dtype=self.dtype)
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction='sum')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                     "weight": weight_np
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=fluid.dygraph.to_variable(weight_np), reduction='sum')
1343 1344
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1345 1346
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
1347 1348 1349 1350
        expected = cross_entropy_loss_2d(input_np,
                                         label_np,
                                         weight=weight_np,
                                         reduction='sum')[0]
1351 1352 1353
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1354 1355

    def test_cross_entropy_loss_2d_none(self):
R
ronnywang 已提交
1356
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1357 1358
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW
1359
        paddle.enable_static()
1360 1361
        prog = fluid.Program()
        startup_prog = fluid.Program()
1362 1363
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1364
        with fluid.program_guard(prog, startup_prog):
1365 1366 1367
            input = fluid.data(name='input',
                               shape=[2, 2, 2, 3],
                               dtype=self.dtype)
1368
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
            ret = cross_entropy_loss(input, label)
            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
1379
            static_ret = np.squeeze(static_ret)
1380 1381 1382 1383
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='none')
1384 1385
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1386
            dy_ret_value = dy_ret.numpy()
1387
            dy_ret_value = np.squeeze(dy_ret_value)
1388 1389
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(input_np, label_np, reduction='none')
1390 1391 1392
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1393 1394

    def test_cross_entropy_loss_2d_mean(self):
R
ronnywang 已提交
1395
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1396 1397
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW
1398
        paddle.enable_static()
1399 1400
        prog = fluid.Program()
        startup_prog = fluid.Program()
1401 1402
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1403
        with fluid.program_guard(prog, startup_prog):
1404 1405 1406
            input = fluid.data(name='input',
                               shape=[2, 2, 2, 3],
                               dtype=self.dtype)
1407
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='mean')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='mean')
1423 1424
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1425 1426
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
1427 1428
        expected = cross_entropy_loss_2d(input_np, label_np,
                                         reduction='mean')[0]
1429 1430 1431
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1432 1433

    def test_cross_entropy_loss_2d_sum(self):
R
ronnywang 已提交
1434
        input_np = np.random.random(size=(2, 2, 2, 3)).astype(self.dtype)  #NHWC
1435 1436
        label_np = np.random.randint(0, 3,
                                     size=(2, 2, 2)).astype(np.int64)  #NHW
1437
        paddle.enable_static()
1438 1439
        prog = fluid.Program()
        startup_prog = fluid.Program()
1440 1441
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
1442
        with fluid.program_guard(prog, startup_prog):
1443 1444 1445
            input = fluid.data(name='input',
                               shape=[2, 2, 2, 3],
                               dtype=self.dtype)
1446
            label = fluid.data(name='label', shape=[2, 2, 2], dtype='int64')
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
            ret = cross_entropy_loss(input, label)

            exe = fluid.Executor(place)
            static_ret = exe.run(prog,
                                 feed={
                                     'input': input_np,
                                     'label': label_np,
                                 },
                                 fetch_list=[ret])
            self.assertIsNotNone(static_ret)
        with fluid.dygraph.guard():
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                reduction='sum')
1462 1463
            dy_ret = cross_entropy_loss(fluid.dygraph.to_variable(input_np),
                                        fluid.dygraph.to_variable(label_np))
1464 1465 1466
            dy_ret_value = dy_ret.numpy()
            self.assertIsNotNone(dy_ret_value)
        expected = cross_entropy_loss_2d(input_np, label_np, reduction='sum')[0]
1467 1468 1469
        np.testing.assert_allclose(static_ret[0], dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret[0], expected, rtol=1e-05)
        np.testing.assert_allclose(dy_ret_value, expected, rtol=1e-05)
1470

1471
    def test_soft_1d_dygraph_api(self):
1472 1473 1474 1475 1476 1477 1478
        with _test_eager_guard():
            self.test_cross_entropy_loss_soft_1d()
            self.test_cross_entropy_loss_soft_1d_weight()
            self.test_cross_entropy_loss_soft_1d_mean()
            self.test_cross_entropy_loss_soft_1d_weight_mean()

    # put all testcases in one test will be failed
1479
    def test_soft_2d_dygraph_api(self):
1480 1481 1482 1483
        with _test_eager_guard():
            self.test_cross_entropy_loss_soft_2d()
            self.test_cross_entropy_loss_soft_2d_weight_mean()

1484
    def test_other_dygraph_api(self):
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
        with _test_eager_guard():
            self.test_cross_entropy_loss_1d_with_mean_ignore()
            self.test_cross_entropy_loss_1d_with_mean_ignore_negative()
            self.test_cross_entropy_loss_1d_with_weight_mean_ignore()
            self.test_cross_entropy_loss_1d_with_weight_mean_ignore_exceedlabel(
            )
            self.test_cross_entropy_loss_1d_with_weight_mean()
            self.test_cross_entropy_loss_1d_with_weight_sum()
            self.test_cross_entropy_loss_1d_with_weight_none()
            self.test_cross_entropy_loss_1d_with_weight_none_func()
            self.test_cross_entropy_loss_1d_mean()
            self.test_cross_entropy_loss_1d_sum()
            self.test_cross_entropy_loss_1d_none()
            self.test_cross_entropy_loss_2d_with_weight_none()
            self.test_cross_entropy_loss_2d_with_weight_axis_change_mean()
            self.test_cross_entropy_loss_2d_with_weight_mean_ignore_exceedlabel(
            )
            self.test_cross_entropy_loss_2d_with_weight_mean()
            self.test_cross_entropy_loss_2d_with_weight_sum()
            self.test_cross_entropy_loss_2d_none()
            self.test_cross_entropy_loss_2d_mean()
            self.test_cross_entropy_loss_2d_sum()

1508

1509
class TestCrossEntropyFAPIError(unittest.TestCase):
1510

1511 1512 1513
    def test_errors(self):
        with program_guard(Program(), Program()):

H
HydrogenSulfate 已提交
1514
            def test_WeightLength_NotEqual():
1515
                input_data = paddle.rand(shape=[20, 100])
1516 1517 1518 1519
                label_data = paddle.randint(0,
                                            100,
                                            shape=[20, 1],
                                            dtype="int64")
H
HydrogenSulfate 已提交
1520
                weight_data = paddle.rand([100 + 1])
1521 1522 1523 1524
                paddle.nn.functional.cross_entropy(input=input_data,
                                                   label=label_data,
                                                   weight=weight_data,
                                                   ignore_index=-100)
H
HydrogenSulfate 已提交
1525

H
HydrogenSulfate 已提交
1526
            self.assertRaises(ValueError, test_WeightLength_NotEqual)
H
HydrogenSulfate 已提交
1527

H
HydrogenSulfate 已提交
1528 1529
            def test_LabelValue_ExceedMax():
                input_data = paddle.rand(shape=[20, 100])
1530 1531 1532 1533
                label_data = paddle.randint(0,
                                            100,
                                            shape=[20, 1],
                                            dtype="int64")
H
HydrogenSulfate 已提交
1534 1535
                label_data[0] = 100
                weight_data = paddle.rand([100])
1536 1537 1538 1539
                paddle.nn.functional.cross_entropy(input=input_data,
                                                   label=label_data,
                                                   weight=weight_data,
                                                   ignore_index=-100)
H
HydrogenSulfate 已提交
1540 1541 1542 1543 1544

            self.assertRaises(ValueError, test_LabelValue_ExceedMax)

            def test_LabelValue_ExceedMin():
                input_data = paddle.rand(shape=[20, 100])
1545 1546 1547 1548
                label_data = paddle.randint(0,
                                            100,
                                            shape=[20, 1],
                                            dtype="int64")
H
HydrogenSulfate 已提交
1549 1550
                label_data[0] = -1
                weight_data = paddle.rand([100])
1551 1552 1553 1554
                paddle.nn.functional.cross_entropy(input=input_data,
                                                   label=label_data,
                                                   weight=weight_data,
                                                   ignore_index=-100)
H
HydrogenSulfate 已提交
1555 1556 1557

            self.assertRaises(ValueError, test_LabelValue_ExceedMin)

H
HydrogenSulfate 已提交
1558
            def static_test_WeightLength_NotEqual():
1559
                input_np = np.random.random([2, 4]).astype('float32')
H
HydrogenSulfate 已提交
1560
                label_np = np.random.randint(0, 4, size=(2)).astype(np.int64)
1561
                weight_np = np.random.random([3]).astype('float32')
H
HydrogenSulfate 已提交
1562 1563 1564 1565 1566 1567
                paddle.enable_static()
                prog = fluid.Program()
                startup_prog = fluid.Program()
                place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
                ) else fluid.CPUPlace()
                with fluid.program_guard(prog, startup_prog):
1568 1569 1570
                    input = fluid.data(name='input',
                                       shape=[2, 4],
                                       dtype='float32')
H
HydrogenSulfate 已提交
1571
                    label = fluid.data(name='label', shape=[2], dtype='int64')
1572 1573 1574
                    weight = fluid.data(name='weight',
                                        shape=[3],
                                        dtype='float32')  #weight for each class
H
HydrogenSulfate 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
                    cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                        weight=weight)
                    ret = cross_entropy_loss(input, label)

                    exe = fluid.Executor(place)
                    static_ret = exe.run(prog,
                                         feed={
                                             'input': input_np,
                                             'label': label_np,
                                             "weight": weight_np
                                         },
                                         fetch_list=[ret])
                    self.assertIsNotNone(static_ret)

            self.assertRaises(ValueError, static_test_WeightLength_NotEqual)

1591

1592 1593
if __name__ == "__main__":
    unittest.main()