test_auto_parallel_mapper.py 20.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import tempfile
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
import unittest
import os
import json
import collections
import math
import numpy as np

import paddle
import paddle.nn as nn
import paddle.fluid as fluid
import paddle.nn.functional as F
import paddle.tensor as tensor
import paddle.utils as utils
import paddle.static as static
from paddle.fluid import core
from paddle.fluid import layers
J
Jiabin Yang 已提交
32
from paddle.fluid.framework import _non_static_mode
33 34 35 36
from paddle.nn.layer.transformer import _convert_param_attr_to_list
from paddle.fluid.initializer import Normal, Constant, NumpyArrayInitializer
from paddle.distributed import fleet

37
from paddle.distributed.fleet import auto
38
from paddle.distributed.auto_parallel.completion import Completer
39
from paddle.distributed.auto_parallel.parallelizer import AutoParallelizer
40 41
from paddle.distributed.auto_parallel.dist_context import DistributedContext
from paddle.distributed.auto_parallel.partitioner import Partitioner
42
from paddle.distributed.auto_parallel.reshard import Resharder
43 44 45 46 47 48 49 50 51 52 53 54 55
from paddle.distributed.auto_parallel.process_group import get_all_process_groups
from paddle.distributed.auto_parallel.process_group import new_process_group
from paddle.distributed.auto_parallel.cluster import Cluster
from paddle.distributed.auto_parallel.cluster import DeviceType
from paddle.distributed.auto_parallel.cluster import LinkType
from paddle.distributed.auto_parallel.utils import check_distributed_attr_for_program
from paddle.distributed.auto_parallel.utils import print_program_with_dist_attr
from paddle.distributed.auto_parallel.mapper import build_process_graph
from paddle.distributed.auto_parallel.mapper import build_cluster_graph
from paddle.distributed.auto_parallel.mapper import mapping
from paddle.distributed.auto_parallel.mapper import get_dtype_bytes
from paddle.distributed.auto_parallel.mapper import get_comm_volume

56 57 58
if os.getenv("CUDA_VISIBLE_DEVICES") is not None:
    os.environ["CUDA_VISIBLE_DEVICES"] = ""

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
paddle.enable_static()
_global_parallel_strategy = None
_global_process_mesh = None
_global_num_stages = None

cluster_json = """
{
  "machines": [
    {
      "hostname": "machine0",
      "addr": "0.0.0.1",
      "port": "768",
      "devices": [
        {
          "global_id": 0,
          "local_id": 0,
          "type": "GPU",
          "model": "A100-SXM4-40GB",
          "sp_gflops": 19500,
          "dp_gflops": 9700,
          "memory": 40
        },
        {
          "global_id": 1,
          "local_id": 1,
          "type": "GPU",
          "model": "A100-SXM4-40GB",
          "sp_gflops": 19500,
          "dp_gflops": 9700,
          "memory": 40
        },
        {
          "global_id": 2,
          "local_id": 2,
          "type": "GPU",
          "model": "A100-SXM4-40GB",
          "sp_gflops": 19500,
          "dp_gflops": 9700,
          "memory": 40
        },
        {
          "global_id": 3,
          "local_id": 3,
          "type": "GPU",
          "model": "A100-SXM4-40GB",
          "sp_gflops": 19500,
          "dp_gflops": 9700,
          "memory": 40
        },
        {
          "global_id": 4,
          "local_id": 0,
          "type": "NIC"
        }
      ],
      "links": [
        {
          "source_global_id": 0,
          "target_global_id": 1,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 0,
          "target_global_id": 2,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 0,
          "target_global_id": 3,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 0,
          "target_global_id": 4,
          "type": "PHB",
137
          "bandwidth": 12
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        },
        {
          "source_global_id": 1,
          "target_global_id": 0,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 1,
          "target_global_id": 2,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 1,
          "target_global_id": 3,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 1,
          "target_global_id": 4,
          "type": "PHB",
161
          "bandwidth": 12
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        },
        {
          "source_global_id": 2,
          "target_global_id": 0,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 2,
          "target_global_id": 1,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 2,
          "target_global_id": 3,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 2,
          "target_global_id": 4,
          "type": "PHB",
          "bandwidth": 12
        },
        {
          "source_global_id": 3,
          "target_global_id": 0,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 3,
          "target_global_id": 1,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 3,
          "target_global_id": 2,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 3,
          "target_global_id": 4,
          "type": "PHB",
209
          "bandwidth": 12
210 211 212 213 214
        },
        {
          "source_global_id": 4,
          "target_global_id": 9,
          "type": "NET",
215
          "bandwidth": 1
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        }
      ]
    },
    {
      "hostname": "machine1",
      "addr": "0.0.0.2",
      "port": "768",
      "devices": [
        {
          "global_id": 5,
          "local_id": 0,
          "type": "GPU",
          "model": "Tesla V100-SXM2-32GB",
          "sp_gflops": 15700,
          "dp_gflops": 7800,
          "memory": 32
        },
        {
          "global_id": 6,
          "local_id": 1,
          "type": "GPU",
          "model": "Tesla V100-SXM2-32GB",
          "sp_gflops": 15700,
          "dp_gflops": 7800,
          "memory": 32
        },
        {
          "global_id": 7,
          "local_id": 2,
          "type": "GPU",
          "model": "Tesla V100-SXM2-32GB",
          "sp_gflops": 15700,
          "dp_gflops": 7800,
          "memory": 32
        },
        {
          "global_id": 8,
          "local_id": 3,
          "type": "GPU",
          "model": "Tesla V100-SXM2-32GB",
          "sp_gflops": 15700,
          "dp_gflops": 7800,
          "memory": 32
        },
        {
          "global_id": 9,
          "local_id": 0,
          "type": "NIC"
        }
      ],
      "links": [
        {
          "source_global_id": 5,
          "target_global_id": 6,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 5,
          "target_global_id": 7,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 5,
          "target_global_id": 8,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 5,
          "target_global_id": 9,
          "type": "PHB",
289
          "bandwidth": 12
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
        },
        {
          "source_global_id": 6,
          "target_global_id": 5,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 6,
          "target_global_id": 7,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 6,
          "target_global_id": 8,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 6,
          "target_global_id": 9,
          "type": "PHB",
313
          "bandwidth": 12
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
        },
        {
          "source_global_id": 7,
          "target_global_id": 5,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 7,
          "target_global_id": 6,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 7,
          "target_global_id": 8,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 7,
          "target_global_id": 9,
          "type": "PHB",
337
          "bandwidth": 12
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        },
        {
          "source_global_id": 8,
          "target_global_id": 5,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 8,
          "target_global_id": 6,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 8,
          "target_global_id": 7,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 8,
          "target_global_id": 9,
          "type": "PHB",
361
          "bandwidth": 12
362 363 364 365 366
        },
        {
          "source_global_id": 9,
          "target_global_id": 4,
          "type": "NET",
367
          "bandwidth": 1
368 369
        }
      ]
370
    }
371 372 373 374 375 376
  ]
}
"""


class MLPLayer(nn.Layer):
377

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
    def __init__(self,
                 hidden_size=64,
                 intermediate_size=4 * 64,
                 initializer_range=0.02):
        super(MLPLayer, self).__init__()
        d_model = hidden_size
        dim_feedforward = intermediate_size
        np.random.seed(2021)
        arr0 = np.random.normal(0, 0.02, size=(d_model, dim_feedforward))
        arr1 = np.random.normal(0, 0.02, size=(dim_feedforward, d_model))
        arr2 = np.random.normal(0, 0.02, size=(d_model, dim_feedforward))
        arr3 = np.random.normal(0, 0.02, size=(dim_feedforward, d_model))
        weight_attr0 = paddle.ParamAttr(initializer=NumpyArrayInitializer(arr0))
        weight_attr1 = paddle.ParamAttr(initializer=NumpyArrayInitializer(arr1))
        weight_attr2 = paddle.ParamAttr(initializer=NumpyArrayInitializer(arr2))
        weight_attr3 = paddle.ParamAttr(initializer=NumpyArrayInitializer(arr3))
        bias_attr = None
395 396 397 398 399 400 401 402
        self.linear0 = nn.Linear(d_model,
                                 dim_feedforward,
                                 weight_attr0,
                                 bias_attr=bias_attr)
        self.linear1 = nn.Linear(dim_feedforward,
                                 d_model,
                                 weight_attr1,
                                 bias_attr=bias_attr)
403
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
404 405 406 407 408 409 410 411
        self.linear2 = nn.Linear(d_model,
                                 dim_feedforward,
                                 weight_attr2,
                                 bias_attr=bias_attr)
        self.linear3 = nn.Linear(dim_feedforward,
                                 d_model,
                                 weight_attr3,
                                 bias_attr=bias_attr)
412 413 414

    def forward(self, input):
        if _global_parallel_strategy == "dp_mp_pp":
415 416 417 418 419 420 421 422 423 424 425
            auto.shard_tensor(self.linear0.weight, _global_process_mesh[0],
                              [None, "y"])

            auto.shard_tensor(self.linear1.weight, _global_process_mesh[0],
                              ["y", None])

            auto.shard_tensor(self.linear2.weight, _global_process_mesh[1],
                              [None, "y"])

            auto.shard_tensor(self.linear3.weight, _global_process_mesh[1],
                              ["y", None])
426 427 428 429 430 431

        out = self.norm(input)
        out = self.linear0(out)
        out = F.gelu(out, approximate=True)
        out = self.linear1(out)

432 433
        auto.shard_tensor(out, _global_process_mesh[1], ["x", None])

434 435 436 437 438 439 440 441 442 443 444
        out = self.linear2(out)
        out = F.gelu(out, approximate=True)
        out = self.linear3(out)
        return out


def mlp_forward(train_program, start_program):
    with static.program_guard(train_program,start_program), \
        utils.unique_name.guard():
        batch_size = 4
        hidden_size = 64
445 446 447 448 449 450
        input = static.data(name="input",
                            shape=[batch_size, hidden_size],
                            dtype='float32')
        label = static.data(name="label",
                            shape=[batch_size, 1],
                            dtype='float32')
451 452

        if _global_parallel_strategy == "dp_mp_pp":
453
            auto.shard_tensor(input, _global_process_mesh[0], ["x", None])
454 455 456
        mlp = MLPLayer(hidden_size=hidden_size,
                       intermediate_size=4 * hidden_size,
                       initializer_range=0.02)
457 458 459 460 461 462 463 464 465 466
        predict = mlp(input)
        error_cost = paddle.nn.functional.square_error_cost(predict, label)
        loss = paddle.mean(error_cost)
    return loss, train_program, start_program


def get_dist_prog(train_program, startup_program, dist_context, rank_id):
    loss, train_program, startup_program = mlp_forward(train_program,
                                                       startup_program)

467 468 469 470
    fleet._user_defined_strategy = fleet.DistributedStrategy()
    fleet.user_defined_optimizer = paddle.fluid.optimizer.AdamOptimizer()
    parallelizer = AutoParallelizer(fleet)
    parallelizer._dist_context = dist_context
471 472

    # auto completion
473 474 475
    completer = Completer(dist_context)
    complete_train_program = completer.complete_forward_annotation(
        train_program)
476
    dist_context.block_state.parse_forward_blocks(complete_train_program)
477 478 479 480 481 482
    params_grads = parallelizer._generate_backward(complete_train_program,
                                                   startup_program,
                                                   loss,
                                                   parameter_list=None,
                                                   no_grad_set=None,
                                                   callbacks=None)
483 484 485 486 487 488 489 490

    partitioner = Partitioner(dist_context, rank_id)
    dist_train_program, dist_startup_prog, dist_params_grads = partitioner.partition(
        complete_train_program, startup_program, params_grads)

    partitioned_optimize_ops = parallelizer._apply_optimize(
        dist_train_program, dist_startup_prog, dist_params_grads)

491 492 493
    resharder = Resharder(dist_train_program, dist_startup_prog, rank_id,
                          dist_context, dist_params_grads)
    resharder.reshard()
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
    return dist_train_program, dist_startup_prog


def is_in_machine(device_local_id, machine):
    for device in machine.devices.values():
        if device_local_id == device.local_id:
            return True
    return False


def get_device_local_ids(machine):
    local_ids = []
    for device in machine.devices.values():
        local_ids.append[device.local_id]
    return local_ids


class TestAutoParallelMapper(unittest.TestCase):
512

513 514 515 516 517 518
    def setUp(self):
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

519
    def test_mapper_dp_mp_pp(self):
520 521
        cluster_json_path = os.path.join(self.temp_dir.name,
                                         "auto_parallel_cluster.json")
522
        cluster_json_object = json.loads(cluster_json)
523
        with open(cluster_json_path, "w") as cluster_json_file:
524 525
            json.dump(cluster_json_object, cluster_json_file)
        cluster = Cluster()
526
        cluster.build_from_file(cluster_json_path)
527 528 529 530 531 532

        global _global_parallel_strategy
        _global_parallel_strategy = "dp_mp_pp"
        global _global_num_stages
        _global_num_stages = 2
        global _global_process_mesh
533 534 535 536
        _global_process_mesh = [
            auto.ProcessMesh([[0, 1], [2, 3]], dim_names=["x", "y"]),
            auto.ProcessMesh([[4, 5], [6, 7]], dim_names=["x", "y"])
        ]
537 538 539 540 541 542 543 544 545 546 547
        processes = [0, 1, 2, 3, 4, 5, 6, 7]

        dist_programs = {}
        for rank_id in processes:
            train_program = static.Program()
            startup_program = static.Program()
            dist_context = DistributedContext()
            dist_train_program, dist_startup_prog = get_dist_prog(
                train_program, startup_program, dist_context, rank_id)
            # if rank_id == 0:
            #   print_program_with_dist_attr(dist_train_program, dist_context)
548
            dist_programs[rank_id] = [dist_train_program, None]
549 550 551 552 553 554 555 556 557 558 559 560 561 562

        rank_mapping = mapping(dist_programs, cluster)

        all_mapped_ranks = set()
        for machine_id, machine_mapping in rank_mapping.items():
            machine = cluster.machines[machine_id]
            machine_mapped_ranks = set()
            machine_mapped_device_local_ids = set()
            for rank, device_ids in machine_mapping["ranks"].items():
                # Only allow one process to one device mapping
                self.assertEqual(len(device_ids), 1)
                self.assertTrue(is_in_machine(device_ids[0], machine))
                machine_mapped_ranks.add(rank)
                machine_mapped_device_local_ids.add(device_ids[0])
563 564
            self.assertEqual(len(machine_mapped_ranks),
                             len(machine_mapped_device_local_ids))
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
            all_mapped_ranks.update(machine_mapped_ranks)
        self.assertEqual(set(processes), all_mapped_ranks)

    def test_mapper_misc(self):
        self.assertEqual(get_dtype_bytes(paddle.float64), 8)
        self.assertEqual(get_dtype_bytes(paddle.float32), 4)
        self.assertEqual(get_dtype_bytes(paddle.float16), 2)
        self.assertEqual(get_dtype_bytes(paddle.bfloat16), 2)
        self.assertEqual(get_dtype_bytes(paddle.int64), 8)
        self.assertEqual(get_dtype_bytes(paddle.int32), 4)
        self.assertEqual(get_dtype_bytes(paddle.int16), 2)
        self.assertEqual(get_dtype_bytes(paddle.int8), 1)
        self.assertEqual(get_dtype_bytes(paddle.uint8), 1)
        self.assertRaises(ValueError, get_dtype_bytes, "unknown type")
        train_program = static.Program()
        startup_program = static.Program()
        ring_id = 0
        root_id = 0
        nranks = 2
        with fluid.program_guard(train_program, startup_program):
            input = layers.data(name="input", shape=[10, 10], dtype='float32')
            output = train_program.current_block().create_var(
                name="outofbroadcast",
                dtype='float32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=False)
            broadcast_op = train_program.global_block().append_op(
                type="c_broadcast",
                inputs={'X': input},
595 596 597 598
                attrs={
                    'ring_id': ring_id,
                    'root': root_id
                },
599 600 601 602 603 604
                outputs={'Out': output})
            self.assertEqual(get_comm_volume(broadcast_op, 0, 1), 400)
            self.assertEqual(get_comm_volume(broadcast_op, 1, 0), None)
            allgather_op = train_program.global_block().append_op(
                type="c_allgather",
                inputs={'X': input},
605 606 607 608
                attrs={
                    'ring_id': ring_id,
                    'nranks': nranks
                },
609 610 611 612 613 614
                outputs={'Out': output})
            self.assertEqual(get_comm_volume(allgather_op, 0, 1), 400)
            self.assertEqual(get_comm_volume(allgather_op, 0, 0), None)
            reduce_op = train_program.global_block().append_op(
                type="c_reduce_sum",
                inputs={'X': input},
615 616 617 618
                attrs={
                    'ring_id': ring_id,
                    'root_id': root_id
                },
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
                outputs={'Out': output})
            self.assertEqual(get_comm_volume(reduce_op, 0, 1), None)
            self.assertEqual(get_comm_volume(reduce_op, 1, 0), 400)
            cast_op = train_program.global_block().append_op(
                type="cast",
                inputs={"X": input},
                outputs={"Out": output},
                attrs={
                    "in_dtype": fluid.core.VarDesc.VarType.FP32,
                    "out_dtype": fluid.core.VarDesc.VarType.FP32
                })
            self.assertRaises(ValueError, get_comm_volume, cast_op, 0, 1)


if __name__ == '__main__':
    unittest.main()