test_auto_parallel_mapper.py 20.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import tempfile
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
import unittest
import os
import json
import collections
import math
import numpy as np

import paddle
import paddle.nn as nn
import paddle.fluid as fluid
import paddle.nn.functional as F
import paddle.tensor as tensor
import paddle.utils as utils
import paddle.static as static
from paddle.fluid import core
from paddle.fluid import layers
J
Jiabin Yang 已提交
34
from paddle.fluid.framework import _non_static_mode
35 36 37 38 39
from paddle.nn.layer.transformer import _convert_param_attr_to_list
from paddle.fluid.initializer import Normal, Constant, NumpyArrayInitializer
from paddle.distributed import fleet

import paddle.distributed.auto_parallel as auto
40
from paddle.distributed.auto_parallel.completion import Completer
41
from paddle.distributed.auto_parallel.parallelizer import AutoParallelizer
42 43
from paddle.distributed.auto_parallel.dist_context import DistributedContext
from paddle.distributed.auto_parallel.partitioner import Partitioner
44
from paddle.distributed.auto_parallel.reshard import Resharder
45 46 47 48 49 50 51 52 53 54 55 56 57
from paddle.distributed.auto_parallel.process_group import get_all_process_groups
from paddle.distributed.auto_parallel.process_group import new_process_group
from paddle.distributed.auto_parallel.cluster import Cluster
from paddle.distributed.auto_parallel.cluster import DeviceType
from paddle.distributed.auto_parallel.cluster import LinkType
from paddle.distributed.auto_parallel.utils import check_distributed_attr_for_program
from paddle.distributed.auto_parallel.utils import print_program_with_dist_attr
from paddle.distributed.auto_parallel.mapper import build_process_graph
from paddle.distributed.auto_parallel.mapper import build_cluster_graph
from paddle.distributed.auto_parallel.mapper import mapping
from paddle.distributed.auto_parallel.mapper import get_dtype_bytes
from paddle.distributed.auto_parallel.mapper import get_comm_volume

58 59 60
if os.getenv("CUDA_VISIBLE_DEVICES") is not None:
    os.environ["CUDA_VISIBLE_DEVICES"] = ""

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
paddle.enable_static()
_global_parallel_strategy = None
_global_process_mesh = None
_global_num_stages = None

cluster_json = """
{
  "machines": [
    {
      "hostname": "machine0",
      "addr": "0.0.0.1",
      "port": "768",
      "devices": [
        {
          "global_id": 0,
          "local_id": 0,
          "type": "GPU",
          "model": "A100-SXM4-40GB",
          "sp_gflops": 19500,
          "dp_gflops": 9700,
          "memory": 40
        },
        {
          "global_id": 1,
          "local_id": 1,
          "type": "GPU",
          "model": "A100-SXM4-40GB",
          "sp_gflops": 19500,
          "dp_gflops": 9700,
          "memory": 40
        },
        {
          "global_id": 2,
          "local_id": 2,
          "type": "GPU",
          "model": "A100-SXM4-40GB",
          "sp_gflops": 19500,
          "dp_gflops": 9700,
          "memory": 40
        },
        {
          "global_id": 3,
          "local_id": 3,
          "type": "GPU",
          "model": "A100-SXM4-40GB",
          "sp_gflops": 19500,
          "dp_gflops": 9700,
          "memory": 40
        },
        {
          "global_id": 4,
          "local_id": 0,
          "type": "NIC"
        }
      ],
      "links": [
        {
          "source_global_id": 0,
          "target_global_id": 1,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 0,
          "target_global_id": 2,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 0,
          "target_global_id": 3,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 0,
          "target_global_id": 4,
          "type": "PHB",
139
          "bandwidth": 12
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        },
        {
          "source_global_id": 1,
          "target_global_id": 0,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 1,
          "target_global_id": 2,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 1,
          "target_global_id": 3,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 1,
          "target_global_id": 4,
          "type": "PHB",
163
          "bandwidth": 12
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        },
        {
          "source_global_id": 2,
          "target_global_id": 0,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 2,
          "target_global_id": 1,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 2,
          "target_global_id": 3,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 2,
          "target_global_id": 4,
          "type": "PHB",
          "bandwidth": 12
        },
        {
          "source_global_id": 3,
          "target_global_id": 0,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 3,
          "target_global_id": 1,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 3,
          "target_global_id": 2,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 3,
          "target_global_id": 4,
          "type": "PHB",
211
          "bandwidth": 12
212 213 214 215 216
        },
        {
          "source_global_id": 4,
          "target_global_id": 9,
          "type": "NET",
217
          "bandwidth": 1
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
        }
      ]
    },
    {
      "hostname": "machine1",
      "addr": "0.0.0.2",
      "port": "768",
      "devices": [
        {
          "global_id": 5,
          "local_id": 0,
          "type": "GPU",
          "model": "Tesla V100-SXM2-32GB",
          "sp_gflops": 15700,
          "dp_gflops": 7800,
          "memory": 32
        },
        {
          "global_id": 6,
          "local_id": 1,
          "type": "GPU",
          "model": "Tesla V100-SXM2-32GB",
          "sp_gflops": 15700,
          "dp_gflops": 7800,
          "memory": 32
        },
        {
          "global_id": 7,
          "local_id": 2,
          "type": "GPU",
          "model": "Tesla V100-SXM2-32GB",
          "sp_gflops": 15700,
          "dp_gflops": 7800,
          "memory": 32
        },
        {
          "global_id": 8,
          "local_id": 3,
          "type": "GPU",
          "model": "Tesla V100-SXM2-32GB",
          "sp_gflops": 15700,
          "dp_gflops": 7800,
          "memory": 32
        },
        {
          "global_id": 9,
          "local_id": 0,
          "type": "NIC"
        }
      ],
      "links": [
        {
          "source_global_id": 5,
          "target_global_id": 6,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 5,
          "target_global_id": 7,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 5,
          "target_global_id": 8,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 5,
          "target_global_id": 9,
          "type": "PHB",
291
          "bandwidth": 12
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
        },
        {
          "source_global_id": 6,
          "target_global_id": 5,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 6,
          "target_global_id": 7,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 6,
          "target_global_id": 8,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 6,
          "target_global_id": 9,
          "type": "PHB",
315
          "bandwidth": 12
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
        },
        {
          "source_global_id": 7,
          "target_global_id": 5,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 7,
          "target_global_id": 6,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 7,
          "target_global_id": 8,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 7,
          "target_global_id": 9,
          "type": "PHB",
339
          "bandwidth": 12
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
        },
        {
          "source_global_id": 8,
          "target_global_id": 5,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 8,
          "target_global_id": 6,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 8,
          "target_global_id": 7,
          "type": "NVL",
          "bandwidth": 42
        },
        {
          "source_global_id": 8,
          "target_global_id": 9,
          "type": "PHB",
363
          "bandwidth": 12
364 365 366 367 368
        },
        {
          "source_global_id": 9,
          "target_global_id": 4,
          "type": "NET",
369
          "bandwidth": 1
370 371
        }
      ]
372
    }
373 374 375 376 377 378
  ]
}
"""


class MLPLayer(nn.Layer):
379

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    def __init__(self,
                 hidden_size=64,
                 intermediate_size=4 * 64,
                 initializer_range=0.02):
        super(MLPLayer, self).__init__()
        d_model = hidden_size
        dim_feedforward = intermediate_size
        np.random.seed(2021)
        arr0 = np.random.normal(0, 0.02, size=(d_model, dim_feedforward))
        arr1 = np.random.normal(0, 0.02, size=(dim_feedforward, d_model))
        arr2 = np.random.normal(0, 0.02, size=(d_model, dim_feedforward))
        arr3 = np.random.normal(0, 0.02, size=(dim_feedforward, d_model))
        weight_attr0 = paddle.ParamAttr(initializer=NumpyArrayInitializer(arr0))
        weight_attr1 = paddle.ParamAttr(initializer=NumpyArrayInitializer(arr1))
        weight_attr2 = paddle.ParamAttr(initializer=NumpyArrayInitializer(arr2))
        weight_attr3 = paddle.ParamAttr(initializer=NumpyArrayInitializer(arr3))
        bias_attr = None
397 398 399 400 401 402 403 404
        self.linear0 = nn.Linear(d_model,
                                 dim_feedforward,
                                 weight_attr0,
                                 bias_attr=bias_attr)
        self.linear1 = nn.Linear(dim_feedforward,
                                 d_model,
                                 weight_attr1,
                                 bias_attr=bias_attr)
405
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
406 407 408 409 410 411 412 413
        self.linear2 = nn.Linear(d_model,
                                 dim_feedforward,
                                 weight_attr2,
                                 bias_attr=bias_attr)
        self.linear3 = nn.Linear(dim_feedforward,
                                 d_model,
                                 weight_attr3,
                                 bias_attr=bias_attr)
414 415 416

    def forward(self, input):
        if _global_parallel_strategy == "dp_mp_pp":
417 418 419 420 421 422 423 424 425 426 427
            auto.shard_tensor(self.linear0.weight, _global_process_mesh[0],
                              [None, "y"])

            auto.shard_tensor(self.linear1.weight, _global_process_mesh[0],
                              ["y", None])

            auto.shard_tensor(self.linear2.weight, _global_process_mesh[1],
                              [None, "y"])

            auto.shard_tensor(self.linear3.weight, _global_process_mesh[1],
                              ["y", None])
428 429 430 431 432 433

        out = self.norm(input)
        out = self.linear0(out)
        out = F.gelu(out, approximate=True)
        out = self.linear1(out)

434 435
        auto.shard_tensor(out, _global_process_mesh[1], ["x", None])

436 437 438 439 440 441 442 443 444 445 446
        out = self.linear2(out)
        out = F.gelu(out, approximate=True)
        out = self.linear3(out)
        return out


def mlp_forward(train_program, start_program):
    with static.program_guard(train_program,start_program), \
        utils.unique_name.guard():
        batch_size = 4
        hidden_size = 64
447 448 449 450 451 452
        input = static.data(name="input",
                            shape=[batch_size, hidden_size],
                            dtype='float32')
        label = static.data(name="label",
                            shape=[batch_size, 1],
                            dtype='float32')
453 454

        if _global_parallel_strategy == "dp_mp_pp":
455
            auto.shard_tensor(input, _global_process_mesh[0], ["x", None])
456 457 458
        mlp = MLPLayer(hidden_size=hidden_size,
                       intermediate_size=4 * hidden_size,
                       initializer_range=0.02)
459 460 461 462 463 464 465 466 467 468
        predict = mlp(input)
        error_cost = paddle.nn.functional.square_error_cost(predict, label)
        loss = paddle.mean(error_cost)
    return loss, train_program, start_program


def get_dist_prog(train_program, startup_program, dist_context, rank_id):
    loss, train_program, startup_program = mlp_forward(train_program,
                                                       startup_program)

469 470 471 472
    fleet._user_defined_strategy = fleet.DistributedStrategy()
    fleet.user_defined_optimizer = paddle.fluid.optimizer.AdamOptimizer()
    parallelizer = AutoParallelizer(fleet)
    parallelizer._dist_context = dist_context
473 474

    # auto completion
475 476 477
    completer = Completer(dist_context)
    complete_train_program = completer.complete_forward_annotation(
        train_program)
478
    dist_context.block_state.parse_forward_blocks(complete_train_program)
479 480 481 482 483 484
    params_grads = parallelizer._generate_backward(complete_train_program,
                                                   startup_program,
                                                   loss,
                                                   parameter_list=None,
                                                   no_grad_set=None,
                                                   callbacks=None)
485 486 487 488 489 490 491 492

    partitioner = Partitioner(dist_context, rank_id)
    dist_train_program, dist_startup_prog, dist_params_grads = partitioner.partition(
        complete_train_program, startup_program, params_grads)

    partitioned_optimize_ops = parallelizer._apply_optimize(
        dist_train_program, dist_startup_prog, dist_params_grads)

493 494 495
    resharder = Resharder(dist_train_program, dist_startup_prog, rank_id,
                          dist_context, dist_params_grads)
    resharder.reshard()
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
    return dist_train_program, dist_startup_prog


def is_in_machine(device_local_id, machine):
    for device in machine.devices.values():
        if device_local_id == device.local_id:
            return True
    return False


def get_device_local_ids(machine):
    local_ids = []
    for device in machine.devices.values():
        local_ids.append[device.local_id]
    return local_ids


class TestAutoParallelMapper(unittest.TestCase):
514

515 516 517 518 519 520
    def setUp(self):
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

521
    def test_mapper_dp_mp_pp(self):
522 523
        cluster_json_path = os.path.join(self.temp_dir.name,
                                         "auto_parallel_cluster.json")
524
        cluster_json_object = json.loads(cluster_json)
525
        with open(cluster_json_path, "w") as cluster_json_file:
526 527
            json.dump(cluster_json_object, cluster_json_file)
        cluster = Cluster()
528
        cluster.build_from_file(cluster_json_path)
529 530 531 532 533 534

        global _global_parallel_strategy
        _global_parallel_strategy = "dp_mp_pp"
        global _global_num_stages
        _global_num_stages = 2
        global _global_process_mesh
535 536 537 538
        _global_process_mesh = [
            auto.ProcessMesh([[0, 1], [2, 3]], dim_names=["x", "y"]),
            auto.ProcessMesh([[4, 5], [6, 7]], dim_names=["x", "y"])
        ]
539 540 541 542 543 544 545 546 547 548 549
        processes = [0, 1, 2, 3, 4, 5, 6, 7]

        dist_programs = {}
        for rank_id in processes:
            train_program = static.Program()
            startup_program = static.Program()
            dist_context = DistributedContext()
            dist_train_program, dist_startup_prog = get_dist_prog(
                train_program, startup_program, dist_context, rank_id)
            # if rank_id == 0:
            #   print_program_with_dist_attr(dist_train_program, dist_context)
550
            dist_programs[rank_id] = [dist_train_program, None]
551 552 553 554 555 556 557 558 559 560 561 562 563 564

        rank_mapping = mapping(dist_programs, cluster)

        all_mapped_ranks = set()
        for machine_id, machine_mapping in rank_mapping.items():
            machine = cluster.machines[machine_id]
            machine_mapped_ranks = set()
            machine_mapped_device_local_ids = set()
            for rank, device_ids in machine_mapping["ranks"].items():
                # Only allow one process to one device mapping
                self.assertEqual(len(device_ids), 1)
                self.assertTrue(is_in_machine(device_ids[0], machine))
                machine_mapped_ranks.add(rank)
                machine_mapped_device_local_ids.add(device_ids[0])
565 566
            self.assertEqual(len(machine_mapped_ranks),
                             len(machine_mapped_device_local_ids))
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
            all_mapped_ranks.update(machine_mapped_ranks)
        self.assertEqual(set(processes), all_mapped_ranks)

    def test_mapper_misc(self):
        self.assertEqual(get_dtype_bytes(paddle.float64), 8)
        self.assertEqual(get_dtype_bytes(paddle.float32), 4)
        self.assertEqual(get_dtype_bytes(paddle.float16), 2)
        self.assertEqual(get_dtype_bytes(paddle.bfloat16), 2)
        self.assertEqual(get_dtype_bytes(paddle.int64), 8)
        self.assertEqual(get_dtype_bytes(paddle.int32), 4)
        self.assertEqual(get_dtype_bytes(paddle.int16), 2)
        self.assertEqual(get_dtype_bytes(paddle.int8), 1)
        self.assertEqual(get_dtype_bytes(paddle.uint8), 1)
        self.assertRaises(ValueError, get_dtype_bytes, "unknown type")
        train_program = static.Program()
        startup_program = static.Program()
        ring_id = 0
        root_id = 0
        nranks = 2
        with fluid.program_guard(train_program, startup_program):
            input = layers.data(name="input", shape=[10, 10], dtype='float32')
            output = train_program.current_block().create_var(
                name="outofbroadcast",
                dtype='float32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=False)
            broadcast_op = train_program.global_block().append_op(
                type="c_broadcast",
                inputs={'X': input},
597 598 599 600
                attrs={
                    'ring_id': ring_id,
                    'root': root_id
                },
601 602 603 604 605 606
                outputs={'Out': output})
            self.assertEqual(get_comm_volume(broadcast_op, 0, 1), 400)
            self.assertEqual(get_comm_volume(broadcast_op, 1, 0), None)
            allgather_op = train_program.global_block().append_op(
                type="c_allgather",
                inputs={'X': input},
607 608 609 610
                attrs={
                    'ring_id': ring_id,
                    'nranks': nranks
                },
611 612 613 614 615 616
                outputs={'Out': output})
            self.assertEqual(get_comm_volume(allgather_op, 0, 1), 400)
            self.assertEqual(get_comm_volume(allgather_op, 0, 0), None)
            reduce_op = train_program.global_block().append_op(
                type="c_reduce_sum",
                inputs={'X': input},
617 618 619 620
                attrs={
                    'ring_id': ring_id,
                    'root_id': root_id
                },
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
                outputs={'Out': output})
            self.assertEqual(get_comm_volume(reduce_op, 0, 1), None)
            self.assertEqual(get_comm_volume(reduce_op, 1, 0), 400)
            cast_op = train_program.global_block().append_op(
                type="cast",
                inputs={"X": input},
                outputs={"Out": output},
                attrs={
                    "in_dtype": fluid.core.VarDesc.VarType.FP32,
                    "out_dtype": fluid.core.VarDesc.VarType.FP32
                })
            self.assertRaises(ValueError, get_comm_volume, cast_op, 0, 1)


if __name__ == '__main__':
    unittest.main()