process_group_nccl.py 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import random
import numpy as np
import os
import shutil

import paddle
from paddle.fluid import core
from datetime import timedelta
import paddle.fluid.core as core
from paddle.fluid.framework import _test_eager_guard
from paddle.fluid.dygraph.parallel import ParallelEnv

ProcessGroupStrategy = core.ProcessGroupStrategy


def init_process_group(strategy=None):
    # this will remove
    if strategy is None:
        strategy = ProcessGroupStrategy()
        strategy.nranks = ParallelEnv().nranks
        strategy.local_rank = ParallelEnv().local_rank
        strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
        strategy.current_endpoint = ParallelEnv().current_endpoint
    if strategy.nranks < 2:
        return

    pg_group = core.ProcessGroupNCCL(strategy, strategy.local_rank,
                                     strategy.nranks)

    return pg_group


class TestProcessGroupFp32(unittest.TestCase):
    def setUp(self):
        paddle.seed(2022)
        random.seed(2022)
        np.random.seed(2022)
        self.config()

    def config(self):
        self.dtype = "float32"
        self.shape = (2, 10, 5)

    def test_create_process_group_nccl(self):
        with _test_eager_guard():
            paddle.set_device('gpu:%d' %
                              paddle.distributed.ParallelEnv().dev_id)

            pg = init_process_group()
            print("rank:", pg.rank(), "size:", pg.size(), "name:", pg.name())
            print("test new group api ok")

            # test allreduce sum
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            sum_result = tensor_x + tensor_y
            if pg.rank() == 0:
                task = pg.allreduce(tensor_x)
                task.wait()
                assert np.array_equal(tensor_x, sum_result)
            else:
                task = pg.allreduce(tensor_y)
                task.wait()
                assert np.array_equal(tensor_y, sum_result)

            print("test allreduce sum api ok")

            # test allreduce max
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            max_result = paddle.maximum(tensor_x, tensor_y)

            if pg.rank() == 0:
                task = pg.allreduce(tensor_x, core.ReduceOp.MAX)
                task.wait()
                assert np.array_equal(tensor_x, max_result)
            else:
                task = pg.allreduce(tensor_y, core.ReduceOp.MAX)
                task.wait()
                assert np.array_equal(tensor_y, max_result)

            print("test allreduce max api ok")

            # test broadcast
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            broadcast_result = paddle.assign(tensor_x)
            if pg.rank() == 0:
                task = pg.broadcast(tensor_x, 0)
                task.synchronize()
                paddle.device.cuda.synchronize()
                assert task.is_completed()
                assert np.array_equal(broadcast_result, tensor_x)
            else:
                task = pg.broadcast(tensor_y, 0)
                task.synchronize()
                paddle.device.cuda.synchronize()
                assert task.is_completed()
                assert np.array_equal(broadcast_result, tensor_y)

            print("test broadcast api ok")

B
Baibaifan 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            # test barrier
            # rank 0
            if pg.rank() == 0:
                task = pg.barrier()
                task.wait()
            # rank 1
            else:
                task = pg.barrier()
                task.wait()

            print("test barrier api ok\n")

            # test send/recv
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            if pg.rank() == 0:
                task = pg.send(tensor_x, dst=1)
                task.wait()
                paddle.device.cuda.synchronize()
            # rank 1
            else:
                y = np.random.random(self.shape).astype(self.dtype)
                tensor_y = paddle.to_tensor(y)
                task = pg.recv(tensor_y, src=0)
                task.wait()
                paddle.device.cuda.synchronize()
                assert np.array_equal(tensor_x, tensor_y)
                print("test send/recv api ok\n")

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

class TestProcessGroupFp16(TestProcessGroupFp32):
    def setUp(self):
        paddle.seed(2022)
        random.seed(2022)
        np.random.seed(2022)
        self.config()

    def config(self):
        self.dtype = "float16"
        self.shape = (4, 20, 20)


if __name__ == "__main__":
    unittest.main()