operator.h 18.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
Q
Qiao Longfei 已提交
20
#include <string>
D
dzhwinter 已提交
21
#include <tuple>
Q
Qiao Longfei 已提交
22
#include <unordered_map>
L
luotao1 已提交
23
#include <utility>
Q
Qiao Longfei 已提交
24 25
#include <vector>

Y
Yu Yang 已提交
26
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
27 28 29 30 31 32
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
X
polish  
Xin Pan 已提交
33
#include "paddle/fluid/framework/operator_kernel_configs.h"
Y
Yi Wang 已提交
34 35 36 37 38
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
39

Q
Qiao Longfei 已提交
40 41
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
42 43 44
namespace paddle {
namespace framework {

45
/// If a variable is a empty variable, that name will be used.
46
constexpr char kEmptyVarName[] = "@EMPTY@";
47 48 49

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
50
constexpr char kTempVarName[] = "@TEMP@";
51 52 53 54

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
55
constexpr char kGradVarSuffix[] = "@GRAD";
56

M
minqiyang 已提交
57 58
constexpr size_t kGradVarSuffixSize = 5U;

59
/// Variables with this suffix are supposed to be filled up with zeros.
60
constexpr char kZeroVarSuffix[] = "@ZERO";
61

C
chengduo 已提交
62 63 64
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
65
// define some kernel priority
66
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
67 68
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

69
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
70 71 72 73 74
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
75 76
}

M
minqiyang 已提交
77
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
78
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
79 80 81 82 83
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
84 85
}

Q
qiaolongfei 已提交
86
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
87 88
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
89

Q
Qiao Longfei 已提交
90
class OperatorBase;
91
class ExecutionContext;
92

X
Xin Pan 已提交
93 94
class RuntimeContext {
 public:
X
Xin Pan 已提交
95 96
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
97

X
Xin Pan 已提交
98 99 100 101
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
102 103 104 105
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
106
/**
X
Xin Pan 已提交
107
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
108 109 110 111 112 113
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
114 115
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
116

Q
Qiao Longfei 已提交
117 118
  virtual ~OperatorBase() {}

119
  /// Executor will call this interface function to Run an op.
120 121
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
122

T
typhoonzero 已提交
123 124 125
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

126 127 128
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
129

130 131
  virtual bool SupportGPU() const { return false; }

132 133
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
134
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
135 136
  template <typename T>
  inline const T& Attr(const std::string& name) const {
M
minqiyang 已提交
137 138
    PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
                   "%s should be in AttributeMap", name);
139 140 141
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
142

Y
Yu Yang 已提交
143 144
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
145

146
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
147
  //! Get a input with argument's name described in `op_proto`
148
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
149
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
150
  const std::vector<std::string>& Inputs(const std::string& name) const;
151
  //! Get all inputs variable names
Q
qijun 已提交
152 153
  std::vector<std::string> InputVars() const;

154
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
155
  //! Get a output with argument's name described in `op_proto`
156
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
157 158
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
159
  const std::vector<std::string>& Outputs(const std::string& name) const;
160
  //! Get all outputs variable names
Y
Yu Yang 已提交
161
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
162

163
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
164
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
165 166
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
167

Q
qiaolongfei 已提交
168
 protected:
Q
Qiao Longfei 已提交
169
  std::string type_;
D
dongzhihong 已提交
170
  // NOTE: in case of OpGrad, inputs_ contains:
171
  // I (Inputs)
D
dongzhihong 已提交
172 173
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
174
  VariableNameMap inputs_;
Y
Yu Yang 已提交
175

D
dongzhihong 已提交
176 177
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
178
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
179
  AttributeMap attrs_;
180 181
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
182 183 184 185

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
186 187
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
188 189
};

190 191 192 193 194 195 196 197 198 199 200 201 202
#ifdef PADDLE_WITH_CUDA
using KernelConfig = boost::variant<
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>,
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>,
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>>;
#else
using KernelConfig = boost::variant<boost::blank>;
#endif

using OpKernelConfigsMap =
    std::unordered_map<OpKernelType, std::vector<KernelConfig>,
                       OpKernelType::Hash>;

203
class ExecutionContext {
Y
Yan Chunwei 已提交
204
 public:
205
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
206
                   const platform::DeviceContext& device_context,
207 208 209 210 211 212 213
                   const RuntimeContext& ctx,
                   std::vector<KernelConfig>* configs)
      : op_(op),
        scope_(scope),
        device_context_(device_context),
        ctx_(ctx),
        kernel_configs_(configs) {}
214

Q
qiaolongfei 已提交
215 216 217 218
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
219
  template <typename T>
Y
Yu Yang 已提交
220 221
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
222 223
  }

224
  bool HasInput(const std::string& name) const;
225

226
  bool HasOutput(const std::string& name) const;
227

Y
Yu Yang 已提交
228
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
229
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
230 231
  }

Y
Yu Yang 已提交
232
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
233
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
234 235
  }

X
Xin Pan 已提交
236
  const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
237

X
Xin Pan 已提交
238
  Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
239

240 241
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
X
Xin Pan 已提交
242 243 244 245
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
246
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
  }

  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
    auto names = op_.Outputs(name);
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

  const std::vector<Variable*> LegacyMultiInputVar(
      const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<Variable*> res;
262
    res.reserve(names.size());
263 264
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
265 266
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
267
                   });
Y
Yan Chunwei 已提交
268 269 270
    return res;
  }

X
Xin Pan 已提交
271
  std::vector<Variable*> LegacyMultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
272
    auto names = op_.Outputs(name);
273
    std::vector<Variable*> res;
274
    res.reserve(names.size());
275 276
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
277 278
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
279
                   });
Y
Yan Chunwei 已提交
280 281 282
    return res;
  }

283 284
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
285
    auto* var = InputVar(name);
286
    return var == nullptr ? nullptr : &var->Get<T>();
287 288 289 290
  }

  template <typename T>
  T* Output(const std::string& name) const {
291
    auto var = OutputVar(name);
292
    return var == nullptr ? nullptr : var->GetMutable<T>();
293 294
  }

X
Xin Pan 已提交
295
  template <typename T>
X
clean  
Xin Pan 已提交
296 297
  const T* LegacyInput(const std::string& name) const {
    auto* var = LegacyInputVar(name);
X
Xin Pan 已提交
298 299 300 301
    return var == nullptr ? nullptr : &var->Get<T>();
  }

  template <typename T>
X
clean  
Xin Pan 已提交
302 303
  T* LegacyOutput(const std::string& name) const {
    auto var = LegacyOutputVar(name);
X
Xin Pan 已提交
304 305 306
    return var == nullptr ? nullptr : var->GetMutable<T>();
  }

X
clean  
Xin Pan 已提交
307
  const Variable* LegacyInputVar(const std::string& name) const;
X
Xin Pan 已提交
308

X
clean  
Xin Pan 已提交
309
  Variable* LegacyOutputVar(const std::string& name) const;
X
Xin Pan 已提交
310

311 312
  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
X
Xin Pan 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> const T* {
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
    return res;
  }

  template <typename T>
  const std::vector<const T*> LegacyMultiInput(const std::string& name) const {
345 346 347 348
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
349
                   [&](const std::string& sub_name) -> const T* {
350
                     auto var = scope_.FindVar(sub_name);
351
                     return var == nullptr ? nullptr : &var->Get<T>();
352 353 354 355 356
                   });
    return res;
  }

  template <typename T>
X
Xin Pan 已提交
357
  std::vector<T*> LegacyMultiOutput(const std::string& name) const {
358
    auto names = op_.Outputs(name);
359
    std::vector<T*> res;
360 361
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
362
                   [&](const std::string& sub_name) -> T* {
363
                     auto var = scope_.FindVar(sub_name);
364
                     return var == nullptr ? nullptr : var->GetMutable<T>();
365 366 367 368
                   });
    return res;
  }

369
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
370

Q
QI JUN 已提交
371 372 373 374 375
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

376
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
377
    return device_context_;
Q
qijun 已提交
378
  }
Q
qijun 已提交
379

Q
QI JUN 已提交
380 381 382 383 384 385 386 387
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
388
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
389 390 391
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
392

D
dzhwinter 已提交
393
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
394 395 396 397
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

X
Xin Pan 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
    auto tmp_allocation_ptr = platform::DeviceTemporaryAllocator::Instance()
                                  .Get<DevContext>(dev_ctx)
                                  .Allocate(product(dim) * sizeof(T));
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

    PADDLE_ENFORCE(
        dynamic_cast<platform::TemporaryAllocation*>(allocation_ptr) != nullptr,
        "The AllocationPtr must be TemporaryAllocation.");
412
    PADDLE_ENFORCE_GE(allocation_ptr->size(),
X
Xin Pan 已提交
413 414 415 416 417 418 419 420 421
                      framework::product(dim) * sizeof(T));

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

422 423 424 425 426 427 428 429
  template <typename T>
  T& GetKernelConfig(int idx) const {
    PADDLE_ENFORCE(kernel_configs_ && kernel_configs_->size() > idx,
                   "%s selected kernel doesn't have kernel config %lu <= %d",
                   op_.Type().c_str(), kernel_configs_->size(), idx);
    return *boost::get<std::shared_ptr<T>>(kernel_configs_->at(idx));
  }

430
 private:
431 432
  const OperatorBase& op_;
  const Scope& scope_;
433
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
434
  const RuntimeContext& ctx_;
435
  mutable std::vector<KernelConfig>* kernel_configs_;
Q
Qiao Longfei 已提交
436 437
};

438 439 440
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
441
template <>
X
clean  
Xin Pan 已提交
442
const Tensor* ExecutionContext::LegacyInput<Tensor>(
X
Xin Pan 已提交
443 444
    const std::string& name) const;

445 446 447 448
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

X
Xin Pan 已提交
449 450 451 452
template <>
const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
    const std::string& name) const;

453 454 455
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
456
template <>
X
clean  
Xin Pan 已提交
457
Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const;
X
Xin Pan 已提交
458

459 460 461 462
template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
463
class OpKernelBase {
Q
qijun 已提交
464
 public:
Q
qijun 已提交
465
  /**
466
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
467 468
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
469
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
470 471
   */

472
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
473

Y
Yu Yang 已提交
474 475 476 477 478 479 480
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
481 482
};

Y
Yu Yang 已提交
483 484
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
485
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
486
  using OpKernelMap =
Y
yuyang18 已提交
487
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
488

Y
Yu Yang 已提交
489 490
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
491 492
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
493 494 495 496
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
497
  }
Y
Yan Chunwei 已提交
498

499
  bool SupportGPU() const override {
Y
Yu Yang 已提交
500 501 502 503 504
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
505 506
  }

507 508 509
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
510

X
Xin Pan 已提交
511 512
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
513

514
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
515

X
polish  
Xin Pan 已提交
516 517
  std::vector<KernelConfig>* GetKernelConfig(const OpKernelType& key) const;

X
Xin Pan 已提交
518
 protected:
519 520 521
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
522 523

 private:
524
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
525
  // same.
526
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
527
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
528 529 530 531 532 533 534

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
535 536 537 538
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
539 540 541 542

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
543 544 545

 protected:
  mutable OpKernelConfigsMap kernel_configs_map_;
L
luotao1 已提交
546
  mutable RuntimeContext* runtime_ctx_ = nullptr;
Q
Qiao Longfei 已提交
547 548
};

Y
Yu Yang 已提交
549 550
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
551 552
}  // namespace framework
}  // namespace paddle