recompute_optimizer.py 3.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

from paddle.fluid.optimizer import RecomputeOptimizer as RO
from .meta_optimizer_base import MetaOptimizerBase


class RecomputeOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(RecomputeOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
22
        self.wrapped_opt = None
23
        # we do not allow meta optimizer to be inner optimizer currently
24 25 26 27
        self.meta_optimizers_white_list = [
            "LarsOptimizer",
            "LambOptimizer",
            "GraphExecutionOptimizer",
28
            "DGCOptimizer",
29 30
        ]
        self.meta_optimizers_black_list = []
31 32 33 34 35

    def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
                        user_defined_strategy):
        super(RecomputeOptimizer, self)._set_basic_info(
            loss, role_maker, user_defined_optimizer, user_defined_strategy)
36 37 38 39 40 41 42 43 44

    def _init_wrapped_opt(self):
        if self.wrapped_opt is not None:
            return

        configs = self.user_defined_strategy.recompute_configs

        self.wrapped_opt = RO(self.inner_opt)
        self.wrapped_opt._set_checkpoints(list(configs["checkpoints"]))
45 46

    def _can_apply(self):
M
mapingshuo 已提交
47
        if not self.role_maker._is_collective:
48 49
            return False

50
        if self.user_defined_strategy.recompute == True:
D
Dong Daxiang 已提交
51 52
            if len(self.user_defined_strategy.recompute_configs[
                    "checkpoints"]) == 0:
53 54 55 56
                return False
            else:
                return True

D
Dong Daxiang 已提交
57 58
    def _disable_strategy(self, dist_strategy):
        dist_strategy.recompute = False
59
        dist_strategy.recompute_configs = {}
D
Dong Daxiang 已提交
60

61
    def _enable_strategy(self, dist_strategy, context):
62 63 64
        # we do not support automatically recompute checkpoints currently
        return

65 66 67 68 69 70
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
71 72
        # maybe inner_opt of other meta optimizer
        self._init_wrapped_opt()
73 74 75
        return self.wrapped_opt.backward(loss, startup_program, parameter_list,
                                         no_grad_set, callbacks)

76 77 78 79 80 81 82
    def apply_gradients(self, params_grads):
        return self.wrapped_opt.apply_gradients(params_grads=params_grads)

    def apply_optimize(self, loss, startup_program, params_grads):
        return self.wrapped_opt.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

83 84 85 86 87
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
88
        self._init_wrapped_opt()
89 90 91 92
        optimize_ops, params_grads = \
            self.wrapped_opt.minimize(loss, startup_program,
                                      parameter_list, no_grad_set)
        return optimize_ops, params_grads