# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and from paddle.fluid.optimizer import RecomputeOptimizer as RO from .meta_optimizer_base import MetaOptimizerBase class RecomputeOptimizer(MetaOptimizerBase): def __init__(self, optimizer): super(RecomputeOptimizer, self).__init__(optimizer) self.inner_opt = optimizer self.wrapped_opt = None # we do not allow meta optimizer to be inner optimizer currently self.meta_optimizers_white_list = [ "LarsOptimizer", "LambOptimizer", "GraphExecutionOptimizer", "DGCOptimizer", ] self.meta_optimizers_black_list = [] def _set_basic_info(self, loss, role_maker, user_defined_optimizer, user_defined_strategy): super(RecomputeOptimizer, self)._set_basic_info( loss, role_maker, user_defined_optimizer, user_defined_strategy) def _init_wrapped_opt(self): if self.wrapped_opt is not None: return configs = self.user_defined_strategy.recompute_configs self.wrapped_opt = RO(self.inner_opt) self.wrapped_opt._set_checkpoints(list(configs["checkpoints"])) def _can_apply(self): if not self.role_maker._is_collective: return False if self.user_defined_strategy.recompute == True: if len(self.user_defined_strategy.recompute_configs[ "checkpoints"]) == 0: return False else: return True def _disable_strategy(self, dist_strategy): dist_strategy.recompute = False dist_strategy.recompute_configs = {} def _enable_strategy(self, dist_strategy, context): # we do not support automatically recompute checkpoints currently return def backward(self, loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None): # maybe inner_opt of other meta optimizer self._init_wrapped_opt() return self.wrapped_opt.backward(loss, startup_program, parameter_list, no_grad_set, callbacks) def apply_gradients(self, params_grads): return self.wrapped_opt.apply_gradients(params_grads=params_grads) def apply_optimize(self, loss, startup_program, params_grads): return self.wrapped_opt.apply_optimize( loss, startup_program=startup_program, params_grads=params_grads) def minimize_impl(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): self._init_wrapped_opt() optimize_ops, params_grads = \ self.wrapped_opt.minimize(loss, startup_program, parameter_list, no_grad_set) return optimize_ops, params_grads