dropout_op.h 3.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14
#pragma once
Y
Yi Wang 已提交
15

16
#include <random>
Y
Yi Wang 已提交
17

Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
X
Xinghai Sun 已提交
20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
D
dzhwinter 已提交
27
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
X
Xinghai Sun 已提交
28

K
Kexin Zhao 已提交
29
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
30
class CPUDropoutKernel : public framework::OpKernel<T> {
31 32 33 34
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* y = context.Output<Tensor>("Out");
35
    const auto* x_data = x->data<T>();
36
    auto* y_data = y->mutable_data<T>(context.GetPlace());
37
    float dropout_prob = context.Attr<float>("dropout_prob");
38

39
    if (!context.Attr<bool>("is_test")) {
40 41
      auto* mask = context.Output<Tensor>("Mask");
      auto* mask_data = mask->mutable_data<T>(context.GetPlace());
42 43 44 45

      // NOTE: fixed seed should only be used in unittest or for debug.
      // Guarantee to use random seed in training.
      std::random_device rnd;
46
      std::minstd_rand engine;
47 48
      int seed =
          context.Attr<bool>("fix_seed") ? context.Attr<int>("seed") : rnd();
49
      engine.seed(seed);
50

51
      std::uniform_real_distribution<float> dist(0, 1);
52 53 54 55 56 57 58 59 60
      size_t size = framework::product(mask->dims());
      for (size_t i = 0; i < size; ++i) {
        if (dist(engine) < dropout_prob) {
          mask_data[i] = 0;
          y_data[i] = 0;
        } else {
          mask_data[i] = 1;
          y_data[i] = x_data[i];
        }
61
      }
62
    } else {
D
dzhwinter 已提交
63 64
      auto X = EigenVector<T>::Flatten(*x);
      auto Y = EigenVector<T>::Flatten(*y);
Q
QI JUN 已提交
65 66
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
67
      Y.device(place) = X * (1.0f - dropout_prob);
68 69 70 71
    }
  }
};

Q
QI JUN 已提交
72
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
73
class DropoutGradKernel : public framework::OpKernel<T> {
X
Xinghai Sun 已提交
74 75
 public:
  void Compute(const framework::ExecutionContext& context) const override {
76 77
    PADDLE_ENFORCE(!context.Attr<bool>("is_test"),
                   "GradOp is only callable when is_test is false");
78

X
Xinghai Sun 已提交
79 80 81 82 83
    auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
    auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* mask = context.Input<Tensor>("Mask");
    grad_x->mutable_data<T>(context.GetPlace());

D
dzhwinter 已提交
84 85 86
    auto M = EigenVector<T>::Flatten(*mask);
    auto dX = EigenVector<T>::Flatten(*grad_x);
    auto dY = EigenVector<T>::Flatten(*grad_y);
X
Xinghai Sun 已提交
87

Q
QI JUN 已提交
88 89
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
90
    dX.device(place) = dY * M;
X
Xinghai Sun 已提交
91 92 93 94 95
  }
};

}  // namespace operators
}  // namespace paddle