__init__.py 2.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24
import paddle
import paddle.nn as nn
from . import models  # noqa: F401
from . import transforms  # noqa: F401
from . import datasets  # noqa: F401
from . import ops  # noqa: F401
from .image import set_image_backend  # noqa: F401
from .image import get_image_backend  # noqa: F401
from .image import image_load  # noqa: F401
from .models import LeNet as models_LeNet
import paddle.utils.deprecated as deprecated
25

26 27 28
__all__ = [  #noqa
    'set_image_backend', 'get_image_backend', 'image_load'
]
29

30

31 32 33
class LeNet(models_LeNet):
    """LeNet model from
    `"LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.`_
34

35 36 37
    Args:
        num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer 
                            will not be defined. Default: 10.
38

39 40
    Examples:
        .. code-block:: python
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
            from paddle.vision.models import LeNet

            model = LeNet()
    """

    @deprecated(
        since="2.0.0",
        update_to="paddle.vision.models.LeNet",
        level=1,
        reason="Please use new API in models, paddle.vision.LeNet will be removed in future"
    )
    def __init__(self, num_classes=10):
        super(LeNet, self).__init__(num_classes=10)
        self.num_classes = num_classes
        self.features = nn.Sequential(
            nn.Conv2D(
                1, 6, 3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2D(2, 2),
            nn.Conv2D(
                6, 16, 5, stride=1, padding=0),
            nn.ReLU(),
            nn.MaxPool2D(2, 2))

        if num_classes > 0:
            self.fc = nn.Sequential(
                nn.Linear(400, 120),
                nn.Linear(120, 84), nn.Linear(84, num_classes))