test_linear_interp_op.py 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import platform
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
X
xiaoting 已提交
24
from paddle.nn.functional import interpolate
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65


def linear_interp_np(input,
                     out_w,
                     out_size=None,
                     actual_shape=None,
                     align_corners=True,
                     align_mode=0,
                     data_layout='NCHW'):
    if data_layout == "NHWC":
        input = np.transpose(input, (0, 2, 1))  # NHWC => NCHW
    if out_size is not None:
        out_w = out_size[0]
    if actual_shape is not None:
        out_w = actual_shape[0]
    batch_size, channel, in_w = input.shape

    ratio_w = 0.0
    if out_w > 1:
        if (align_corners):
            ratio_w = (in_w - 1.0) / (out_w - 1.0)
        else:
            ratio_w = 1.0 * in_w / out_w

    out = np.zeros((batch_size, channel, out_w))

    for j in range(out_w):
        if (align_mode == 0 and not align_corners):
            w = int(ratio_w * (j + 0.5) - 0.5)
        else:
            w = int(ratio_w * j)
        w = max(0, w)
        wid = 1 if w < in_w - 1 else 0

        if (align_mode == 0 and not align_corners):
            idx_src_w = max(ratio_w * (j + 0.5) - 0.5, 0)
            w1lambda = idx_src_w - w
        else:
            w1lambda = ratio_w * j - w
        w2lambda = 1.0 - w1lambda

66 67
        out[:, :,
            j] = w2lambda * input[:, :, w] + w1lambda * input[:, :, w + wid]
68 69 70 71 72 73 74 75

    if data_layout == "NHWC":
        out = np.transpose(out, (0, 2, 1))  # NCHW => NHWC

    return out.astype(input.dtype)


class TestLinearInterpOp(OpTest):
76

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    def setUp(self):
        self.out_size = None
        self.actual_shape = None
        self.data_layout = 'NCHW'
        self.init_test_case()
        self.op_type = "linear_interp"
        input_np = np.random.random(self.input_shape).astype("float64")

        if self.data_layout == "NCHW":
            in_w = self.input_shape[2]
        else:
            in_w = self.input_shape[1]

        if self.scale > 0:
            out_w = int(in_w * self.scale)
        else:
            out_w = self.out_w

        output_np = linear_interp_np(input_np, out_w, self.out_size,
                                     self.actual_shape, self.align_corners,
                                     self.align_mode, self.data_layout)
        self.inputs = {'X': input_np}
        if self.out_size is not None:
            self.inputs['OutSize'] = self.out_size
        if self.actual_shape is not None:
            self.inputs['OutSize'] = self.actual_shape

        self.attrs = {
            'out_w': self.out_w,
            'scale': self.scale,
            'interp_method': self.interp_method,
            'align_corners': self.align_corners,
            'align_mode': self.align_mode,
            'data_layout': self.data_layout
        }
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        if platform.system() == "Linux":
            self.check_output(atol=1e-7)
        else:
            self.check_output(atol=1e-5)

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', in_place=True)

    def init_test_case(self):
        self.interp_method = 'linear'
        self.input_shape = [1, 3, 100]
        self.out_w = 50
        self.scale = 0.
128 129 130
        self.out_size = np.array([
            50,
        ]).astype("int32")
131 132 133 134 135
        self.align_corners = False
        self.align_mode = 1


class TestLinearInterpOpDataLayout(TestLinearInterpOp):
136

137 138 139 140 141
    def init_test_case(self):
        self.interp_method = 'linear'
        self.input_shape = [1, 3, 100]
        self.out_w = 50
        self.scale = 0.
142 143 144
        self.out_size = np.array([
            50,
        ]).astype("int32")
145 146 147 148 149 150
        self.align_corners = False
        self.align_mode = 1
        self.data_layout = 'NHWC'


class TestLinearInterpOpAlignMode(TestLinearInterpOp):
151

152 153 154 155 156
    def init_test_case(self):
        self.interp_method = 'linear'
        self.input_shape = [1, 3, 100]
        self.out_w = 50
        self.scale = 0.
157 158 159
        self.out_size = np.array([
            50,
        ]).astype("int32")
160 161 162 163 164
        self.align_corners = False
        self.align_mode = 0


class TestLinearInterpOpScale(TestLinearInterpOp):
165

166 167 168 169 170
    def init_test_case(self):
        self.interp_method = 'linear'
        self.input_shape = [1, 3, 100]
        self.out_w = 50
        self.scale = 0.5
171 172 173
        self.out_size = np.array([
            50,
        ]).astype("int32")
174 175 176 177 178
        self.align_corners = False
        self.align_mode = 0


class TestLinearInterpOpSizeTensor(TestLinearInterpOp):
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    def setUp(self):
        self.out_size = None
        self.actual_shape = None
        self.data_layout = 'NCHW'
        self.init_test_case()
        self.op_type = "linear_interp"
        input_np = np.random.random(self.input_shape).astype("float64")
        self.shape_by_1Dtensor = False
        self.scale_by_1Dtensor = False

        if self.data_layout == "NCHW":
            in_w = self.input_shape[2]
        else:
            in_w = self.input_shape[1]

        if self.scale > 0:
            out_w = int(in_w * self.scale)
        else:
            out_w = self.out_w

        output_np = linear_interp_np(input_np, out_w, self.out_size,
                                     self.actual_shape, self.align_corners,
                                     self.align_mode, self.data_layout)

        self.inputs = {'X': input_np}
        if self.out_size is not None and self.shape_by_1Dtensor:
            self.inputs['OutSize'] = self.out_size
        elif self.actual_shape is not None and self.shape_by_1Dtensor:
            self.inputs['OutSize'] = self.actual_shape
        else:
            size_tensor = []
            for index, ele in enumerate(self.out_size):
                size_tensor.append(("x" + str(index), np.ones(
                    (1)).astype('int32') * ele))
            self.inputs['SizeTensor'] = size_tensor

        self.attrs = {
            'out_w': self.out_w,
            'scale': self.scale,
            'interp_method': self.interp_method,
            'align_corners': self.align_corners,
            'align_mode': self.align_mode,
            'data_layout': self.data_layout
        }
        self.outputs = {'Out': output_np}


227
class TestResizeLinearAPI(unittest.TestCase):
228

229
    def test_case(self):
230 231 232
        x = fluid.data(name="x", shape=[1, 3, 64], dtype="float32")

        dim = fluid.data(name="dim", shape=[1], dtype="int32")
233
        shape_tensor = fluid.data(name="shape_tensor", shape=[1], dtype="int32")
234
        actual_size = fluid.data(name="actual_size", shape=[1], dtype="int32")
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        scale_tensor = fluid.data(name="scale_tensor",
                                  shape=[1],
                                  dtype="float32")

        out1 = fluid.layers.resize_linear(x,
                                          out_shape=[
                                              128,
                                          ],
                                          align_mode=1,
                                          align_corners=False)
        out2 = fluid.layers.resize_linear(x,
                                          out_shape=[128],
                                          align_mode=1,
                                          align_corners=False)
        out3 = fluid.layers.resize_linear(x,
                                          out_shape=shape_tensor,
                                          align_mode=1,
                                          align_corners=False)
        out4 = fluid.layers.resize_linear(x,
                                          out_shape=[
                                              128,
                                          ],
                                          actual_shape=actual_size,
                                          align_mode=1,
                                          align_corners=False)
        out5 = fluid.layers.resize_linear(x,
                                          scale=scale_tensor,
                                          align_mode=1,
                                          align_corners=False)

        out6 = interpolate(x,
                           scale_factor=scale_tensor,
                           mode='linear',
                           align_mode=1,
                           align_corners=False,
                           data_format='NCW')
        out7 = interpolate(x,
                           size=[
                               128,
                           ],
                           mode='linear',
                           align_mode=1,
                           align_corners=False,
                           data_format='NCW')
        out8 = interpolate(x,
                           size=shape_tensor,
                           mode='linear',
                           align_mode=1,
                           align_corners=False,
                           data_format='NCW')
285

286 287
        x_data = np.random.random((1, 3, 64)).astype("float32")
        dim_data = np.array([128]).astype("int32")
288 289 290 291 292 293
        shape_data = np.array([
            128,
        ]).astype("int32")
        actual_size_data = np.array([
            128,
        ]).astype("int32")
294
        scale_data = np.array([2.0]).astype("float32")
295 296 297 298 299 300 301

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
302 303 304 305 306 307 308 309 310 311 312
        results = exe.run(
            fluid.default_main_program(),
            feed={
                "x": x_data,
                "dim": dim_data,
                "shape_tensor": shape_data,
                "actual_size": actual_size_data,
                "scale_tensor": scale_data
            },
            fetch_list=[out1, out2, out3, out4, out5, out6, out7, out8],
            return_numpy=True)
313

314 315 316 317
        expect_res = linear_interp_np(x_data,
                                      out_w=128,
                                      align_mode=1,
                                      align_corners=False)
318
        for res in results:
319
            np.testing.assert_allclose(res, expect_res, rtol=1e-05)
320 321 322


class TestLinearInterpOpAPI2_0(unittest.TestCase):
323

324 325
    def test_case(self):

326
        # dygraph
327
        x_data = np.random.random((1, 3, 128)).astype("float32")
328 329 330 331 332 333 334
        us_1 = paddle.nn.Upsample(size=[
            64,
        ],
                                  mode='linear',
                                  align_mode=1,
                                  align_corners=False,
                                  data_format='NCW')
335 336 337 338
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(x_data)
            interp = us_1(x)

339 340 341 342
            expect = linear_interp_np(x_data,
                                      out_w=64,
                                      align_mode=1,
                                      align_corners=False)
343

344
            np.testing.assert_allclose(interp.numpy(), expect, rtol=1e-05)
345 346


347
class TestResizeLinearOpUint8(OpTest):
348

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    def setUp(self):
        self.out_size = None
        self.actual_shape = None
        self.init_test_case()
        self.op_type = "linear_interp"
        input_np = np.random.random(self.input_shape).astype("uint8")

        if self.scale > 0:
            out_w = int(self.input_shape[3] * self.scale)
        else:
            out_w = self.out_w

        output_np = linear_interp_np(input_np, out_w, self.out_size,
                                     self.actual_shape, self.align_corners,
                                     self.align_mode)
        self.inputs = {'X': input_np}
        if self.out_size is not None:
            self.inputs['OutSize'] = self.out_size

        self.attrs = {
            'out_w': self.out_w,
            'scale': self.scale,
            'interp_method': self.interp_method,
            'align_corners': self.align_corners,
            'align_mode': self.align_mode
        }
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        if platform.system() == "Linux":
            self.check_output_with_place(place=core.CPUPlace(), atol=1e-7)
        else:
            self.check_output_with_place(place=core.CPUPlace(), atol=1e-5)

    def init_test_case(self):
        self.interp_method = 'linear'
        self.input_shape = [2, 3, 100]
        self.out_w = 50
        self.scale = 0.
388 389 390
        self.out_size = np.array([
            50,
        ]).astype("int32")
391 392 393 394 395
        self.align_corners = True
        self.align_mode = 1


class TestLinearInterpOpException(unittest.TestCase):
396

397
    def test_exception(self):
398

399 400
        def input_shape_error():
            x1 = fluid.data(name="x1", shape=[1], dtype="float32")
401 402 403 404 405
            out = fluid.layers.resize_linear(x1,
                                             out_shape=[
                                                 256,
                                             ],
                                             data_format='NCW')
406 407 408

        def data_format_error():
            x2 = fluid.data(name="x2", shape=[1, 3, 128], dtype="float32")
409 410 411 412 413
            out = fluid.layers.resize_linear(x2,
                                             out_shape=[
                                                 256,
                                             ],
                                             data_format='NHWCD')
414 415 416

        def out_shape_error():
            x3 = fluid.data(name="x3", shape=[1, 3, 128], dtype="float32")
417 418 419 420 421 422
            out = fluid.layers.resize_linear(x3,
                                             out_shape=[
                                                 256,
                                                 256,
                                             ],
                                             data_format='NHWC')
423 424 425 426 427 428 429

        self.assertRaises(ValueError, input_shape_error)
        self.assertRaises(ValueError, data_format_error)
        self.assertRaises(ValueError, out_shape_error)


class TestLinearInterpOpError(unittest.TestCase):
430

431 432 433 434 435
    def test_error(self):
        with program_guard(Program(), Program()):

            def input_shape_error():
                x1 = fluid.data(name="x1", shape=[1], dtype="float32")
436 437 438 439 440
                out1 = paddle.nn.Upsample(size=[
                    256,
                ],
                                          data_format='NCW',
                                          mode='linear')
441 442 443 444
                out1_res = out1(x1)

            def data_format_error():
                x2 = fluid.data(name="x2", shape=[1, 3, 128], dtype="float32")
445 446 447 448 449
                out2 = paddle.nn.Upsample(size=[
                    256,
                ],
                                          data_format='NHWCD',
                                          mode='linear')
450 451 452 453
                out2_res = out2(x2)

            def out_shape_error():
                x3 = fluid.data(name="x3", shape=[1, 3, 128], dtype="float32")
454 455 456 457 458 459
                out3 = paddle.nn.Upsample(size=[
                    256,
                    256,
                ],
                                          data_format='NHWC',
                                          mode='linear')
460 461 462 463 464 465 466 467 468
                out3_res = out3(x3)

            self.assertRaises(ValueError, input_shape_error)
            self.assertRaises(ValueError, data_format_error)
            self.assertRaises(ValueError, out_shape_error)


if __name__ == "__main__":
    unittest.main()