test_linear_interp_op.py 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import platform
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
X
xiaoting 已提交
24
from paddle.nn.functional import interpolate
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213


def linear_interp_np(input,
                     out_w,
                     out_size=None,
                     actual_shape=None,
                     align_corners=True,
                     align_mode=0,
                     data_layout='NCHW'):
    if data_layout == "NHWC":
        input = np.transpose(input, (0, 2, 1))  # NHWC => NCHW
    if out_size is not None:
        out_w = out_size[0]
    if actual_shape is not None:
        out_w = actual_shape[0]
    batch_size, channel, in_w = input.shape

    ratio_w = 0.0
    if out_w > 1:
        if (align_corners):
            ratio_w = (in_w - 1.0) / (out_w - 1.0)
        else:
            ratio_w = 1.0 * in_w / out_w

    out = np.zeros((batch_size, channel, out_w))

    for j in range(out_w):
        if (align_mode == 0 and not align_corners):
            w = int(ratio_w * (j + 0.5) - 0.5)
        else:
            w = int(ratio_w * j)
        w = max(0, w)
        wid = 1 if w < in_w - 1 else 0

        if (align_mode == 0 and not align_corners):
            idx_src_w = max(ratio_w * (j + 0.5) - 0.5, 0)
            w1lambda = idx_src_w - w
        else:
            w1lambda = ratio_w * j - w
        w2lambda = 1.0 - w1lambda

        out[:, :, j] = w2lambda * input[:, :, w] + w1lambda * input[:, :, w +
                                                                    wid]

    if data_layout == "NHWC":
        out = np.transpose(out, (0, 2, 1))  # NCHW => NHWC

    return out.astype(input.dtype)


class TestLinearInterpOp(OpTest):
    def setUp(self):
        self.out_size = None
        self.actual_shape = None
        self.data_layout = 'NCHW'
        self.init_test_case()
        self.op_type = "linear_interp"
        input_np = np.random.random(self.input_shape).astype("float64")

        if self.data_layout == "NCHW":
            in_w = self.input_shape[2]
        else:
            in_w = self.input_shape[1]

        if self.scale > 0:
            out_w = int(in_w * self.scale)
        else:
            out_w = self.out_w

        output_np = linear_interp_np(input_np, out_w, self.out_size,
                                     self.actual_shape, self.align_corners,
                                     self.align_mode, self.data_layout)
        self.inputs = {'X': input_np}
        if self.out_size is not None:
            self.inputs['OutSize'] = self.out_size
        if self.actual_shape is not None:
            self.inputs['OutSize'] = self.actual_shape

        self.attrs = {
            'out_w': self.out_w,
            'scale': self.scale,
            'interp_method': self.interp_method,
            'align_corners': self.align_corners,
            'align_mode': self.align_mode,
            'data_layout': self.data_layout
        }
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        if platform.system() == "Linux":
            self.check_output(atol=1e-7)
        else:
            self.check_output(atol=1e-5)

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', in_place=True)

    def init_test_case(self):
        self.interp_method = 'linear'
        self.input_shape = [1, 3, 100]
        self.out_w = 50
        self.scale = 0.
        self.out_size = np.array([50, ]).astype("int32")
        self.align_corners = False
        self.align_mode = 1


class TestLinearInterpOpDataLayout(TestLinearInterpOp):
    def init_test_case(self):
        self.interp_method = 'linear'
        self.input_shape = [1, 3, 100]
        self.out_w = 50
        self.scale = 0.
        self.out_size = np.array([50, ]).astype("int32")
        self.align_corners = False
        self.align_mode = 1
        self.data_layout = 'NHWC'


class TestLinearInterpOpAlignMode(TestLinearInterpOp):
    def init_test_case(self):
        self.interp_method = 'linear'
        self.input_shape = [1, 3, 100]
        self.out_w = 50
        self.scale = 0.
        self.out_size = np.array([50, ]).astype("int32")
        self.align_corners = False
        self.align_mode = 0


class TestLinearInterpOpScale(TestLinearInterpOp):
    def init_test_case(self):
        self.interp_method = 'linear'
        self.input_shape = [1, 3, 100]
        self.out_w = 50
        self.scale = 0.5
        self.out_size = np.array([50, ]).astype("int32")
        self.align_corners = False
        self.align_mode = 0


class TestLinearInterpOpSizeTensor(TestLinearInterpOp):
    def setUp(self):
        self.out_size = None
        self.actual_shape = None
        self.data_layout = 'NCHW'
        self.init_test_case()
        self.op_type = "linear_interp"
        input_np = np.random.random(self.input_shape).astype("float64")
        self.shape_by_1Dtensor = False
        self.scale_by_1Dtensor = False

        if self.data_layout == "NCHW":
            in_w = self.input_shape[2]
        else:
            in_w = self.input_shape[1]

        if self.scale > 0:
            out_w = int(in_w * self.scale)
        else:
            out_w = self.out_w

        output_np = linear_interp_np(input_np, out_w, self.out_size,
                                     self.actual_shape, self.align_corners,
                                     self.align_mode, self.data_layout)

        self.inputs = {'X': input_np}
        if self.out_size is not None and self.shape_by_1Dtensor:
            self.inputs['OutSize'] = self.out_size
        elif self.actual_shape is not None and self.shape_by_1Dtensor:
            self.inputs['OutSize'] = self.actual_shape
        else:
            size_tensor = []
            for index, ele in enumerate(self.out_size):
                size_tensor.append(("x" + str(index), np.ones(
                    (1)).astype('int32') * ele))
            self.inputs['SizeTensor'] = size_tensor

        self.attrs = {
            'out_w': self.out_w,
            'scale': self.scale,
            'interp_method': self.interp_method,
            'align_corners': self.align_corners,
            'align_mode': self.align_mode,
            'data_layout': self.data_layout
        }
        self.outputs = {'Out': output_np}


214
class TestResizeLinearAPI(unittest.TestCase):
215
    def test_case(self):
216 217 218
        x = fluid.data(name="x", shape=[1, 3, 64], dtype="float32")

        dim = fluid.data(name="dim", shape=[1], dtype="int32")
219
        shape_tensor = fluid.data(name="shape_tensor", shape=[1], dtype="int32")
220
        actual_size = fluid.data(name="actual_size", shape=[1], dtype="int32")
221 222 223 224
        scale_tensor = fluid.data(
            name="scale_tensor", shape=[1], dtype="float32")

        out1 = fluid.layers.resize_linear(
225
            x, out_shape=[128, ], align_mode=1, align_corners=False)
226
        out2 = fluid.layers.resize_linear(
227
            x, out_shape=[128], align_mode=1, align_corners=False)
228
        out3 = fluid.layers.resize_linear(
229
            x, out_shape=shape_tensor, align_mode=1, align_corners=False)
230 231
        out4 = fluid.layers.resize_linear(
            x,
232
            out_shape=[128, ],
233 234 235
            actual_shape=actual_size,
            align_mode=1,
            align_corners=False)
236 237
        out5 = fluid.layers.resize_linear(
            x, scale=scale_tensor, align_mode=1, align_corners=False)
238

239
        out6 = interpolate(
240
            x,
241 242
            scale_factor=scale_tensor,
            mode='linear',
243 244
            align_mode=1,
            align_corners=False,
245 246
            data_format='NCW')
        out7 = interpolate(
247
            x,
248 249
            size=[128, ],
            mode='linear',
250 251
            align_mode=1,
            align_corners=False,
252 253
            data_format='NCW')
        out8 = interpolate(
254
            x,
255 256
            size=shape_tensor,
            mode='linear',
257 258
            align_mode=1,
            align_corners=False,
259
            data_format='NCW')
260

261 262 263 264 265
        x_data = np.random.random((1, 3, 64)).astype("float32")
        dim_data = np.array([128]).astype("int32")
        shape_data = np.array([128, ]).astype("int32")
        actual_size_data = np.array([128, ]).astype("int32")
        scale_data = np.array([2.0]).astype("float32")
266 267 268 269 270 271 272

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
273 274 275 276 277 278 279 280 281 282 283
        results = exe.run(
            fluid.default_main_program(),
            feed={
                "x": x_data,
                "dim": dim_data,
                "shape_tensor": shape_data,
                "actual_size": actual_size_data,
                "scale_tensor": scale_data
            },
            fetch_list=[out1, out2, out3, out4, out5, out6, out7, out8],
            return_numpy=True)
284 285

        expect_res = linear_interp_np(
286
            x_data, out_w=128, align_mode=1, align_corners=False)
287 288 289 290 291 292 293 294 295
        for res in results:
            self.assertTrue(np.allclose(res, expect_res))


class TestLinearInterpOpAPI2_0(unittest.TestCase):
    def test_case(self):

        # dygraph 
        x_data = np.random.random((1, 3, 128)).astype("float32")
296
        us_1 = paddle.nn.Upsample(
297 298
            size=[64, ],
            mode='linear',
299
            align_mode=1,
300 301
            align_corners=False,
            data_format='NCW')
302 303 304 305 306 307 308 309 310 311
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(x_data)
            interp = us_1(x)

            expect = linear_interp_np(
                x_data, out_w=64, align_mode=1, align_corners=False)

            self.assertTrue(np.allclose(interp.numpy(), expect))


312
class TestResizeLinearOpUint8(OpTest):
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    def setUp(self):
        self.out_size = None
        self.actual_shape = None
        self.init_test_case()
        self.op_type = "linear_interp"
        input_np = np.random.random(self.input_shape).astype("uint8")

        if self.scale > 0:
            out_w = int(self.input_shape[3] * self.scale)
        else:
            out_w = self.out_w

        output_np = linear_interp_np(input_np, out_w, self.out_size,
                                     self.actual_shape, self.align_corners,
                                     self.align_mode)
        self.inputs = {'X': input_np}
        if self.out_size is not None:
            self.inputs['OutSize'] = self.out_size

        self.attrs = {
            'out_w': self.out_w,
            'scale': self.scale,
            'interp_method': self.interp_method,
            'align_corners': self.align_corners,
            'align_mode': self.align_mode
        }
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        if platform.system() == "Linux":
            self.check_output_with_place(place=core.CPUPlace(), atol=1e-7)
        else:
            self.check_output_with_place(place=core.CPUPlace(), atol=1e-5)

    def init_test_case(self):
        self.interp_method = 'linear'
        self.input_shape = [2, 3, 100]
        self.out_w = 50
        self.scale = 0.
        self.out_size = np.array([50, ]).astype("int32")
        self.align_corners = True
        self.align_mode = 1


class TestLinearInterpOpException(unittest.TestCase):
    def test_exception(self):
        def input_shape_error():
            x1 = fluid.data(name="x1", shape=[1], dtype="float32")
            out = fluid.layers.resize_linear(
                x1, out_shape=[256, ], data_format='NCW')

        def data_format_error():
            x2 = fluid.data(name="x2", shape=[1, 3, 128], dtype="float32")
            out = fluid.layers.resize_linear(
                x2, out_shape=[256, ], data_format='NHWCD')

        def out_shape_error():
            x3 = fluid.data(name="x3", shape=[1, 3, 128], dtype="float32")
            out = fluid.layers.resize_linear(
                x3, out_shape=[
                    256,
                    256,
                ], data_format='NHWC')

        self.assertRaises(ValueError, input_shape_error)
        self.assertRaises(ValueError, data_format_error)
        self.assertRaises(ValueError, out_shape_error)


class TestLinearInterpOpError(unittest.TestCase):
    def test_error(self):
        with program_guard(Program(), Program()):

            def input_shape_error():
                x1 = fluid.data(name="x1", shape=[1], dtype="float32")
388
                out1 = paddle.nn.Upsample(
389
                    size=[256, ], data_format='NCW', mode='linear')
390 391 392 393
                out1_res = out1(x1)

            def data_format_error():
                x2 = fluid.data(name="x2", shape=[1, 3, 128], dtype="float32")
394
                out2 = paddle.nn.Upsample(
395
                    size=[256, ], data_format='NHWCD', mode='linear')
396 397 398 399
                out2_res = out2(x2)

            def out_shape_error():
                x3 = fluid.data(name="x3", shape=[1, 3, 128], dtype="float32")
400
                out3 = paddle.nn.Upsample(
401
                    size=[
402 403
                        256,
                        256,
404
                    ], data_format='NHWC', mode='linear')
405 406 407 408 409 410 411 412 413
                out3_res = out3(x3)

            self.assertRaises(ValueError, input_shape_error)
            self.assertRaises(ValueError, data_format_error)
            self.assertRaises(ValueError, out_shape_error)


if __name__ == "__main__":
    unittest.main()