ps_gpu_wrapper.cc 34.0 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
Thunderbrook 已提交
29
#ifdef PADDLE_WITH_HETERPS
Y
yaoxuefeng 已提交
30

T
Thunderbrook 已提交
31
#include <algorithm>
Y
yaoxuefeng 已提交
32 33
#include <deque>

T
Thunderbrook 已提交
34 35 36 37 38 39
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
#include "paddle/fluid/platform/timer.h"

namespace paddle {
namespace framework {

T
Thunderbrook 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
#ifdef PADDLE_WITH_PSLIB
void AfsWrapper::init(const std::string& fs_name, const std::string& fs_user,
                      const std::string& pass_wd, const std::string& conf) {
  int ret = afs_handler_.init(fs_name.c_str(), fs_user.c_str(), pass_wd.c_str(),
                              conf.c_str());
  if (ret != 0) {
    LOG(ERROR) << "AFS Init Error";
  }
}

int AfsWrapper::remove(const std::string& path) {
  return afs_handler_.remove(path);
}

int AfsWrapper::mkdir(const std::string& path) {
  return afs_handler_.mkdir(path);
}

std::vector<std::string> AfsWrapper::list(const std::string& path) {
  return afs_handler_.list(path);
}

int AfsWrapper::exist(const std::string& path) {
  return afs_handler_.exist(path);
}

int AfsWrapper::upload(const std::string& local_file,
                       const std::string& afs_file) {
  return afs_handler_.upload_file(local_file, afs_file);
}

int AfsWrapper::download(const std::string& local_file,
                         const std::string& afs_file) {
  return afs_handler_.download_file(local_file, afs_file);
}
#endif

T
Thunderbrook 已提交
77 78
std::shared_ptr<PSGPUWrapper> PSGPUWrapper::s_instance_ = NULL;
bool PSGPUWrapper::is_initialized_ = false;
T
Thunderbrook 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91
#ifdef PADDLE_WITH_PSLIB
void PSGPUWrapper::InitAfsApi(const std::string& fs_name,
                              const std::string& fs_user,
                              const std::string& pass_wd,
                              const std::string& conf) {
  int ret = afs_handler_.init(fs_name.c_str(), fs_user.c_str(), pass_wd.c_str(),
                              conf.c_str());
  if (ret != 0) {
    LOG(ERROR) << "AFS Init Error";
  }
  use_afs_api_ = 1;
}
#endif
92
void PSGPUWrapper::PreBuildTask(std::shared_ptr<HeterContext> gpu_task) {
Y
yaoxuefeng 已提交
93
  VLOG(3) << "PSGPUWrapper::BuildGPUPSTask begin";
T
Thunderbrook 已提交
94 95
  platform::Timer timeline;
  timeline.Start();
96
  int device_num = heter_devices_.size();
97 98 99 100 101
  if (!multi_mf_dim_) {
    gpu_task->init(thread_keys_shard_num_, device_num);
  } else {
    gpu_task->init(thread_keys_shard_num_, device_num, multi_mf_dim_);
  }
Y
yaoxuefeng 已提交
102 103
  auto& local_keys = gpu_task->feature_keys_;
  auto& local_ptr = gpu_task->value_ptr_;
104

Y
yaoxuefeng 已提交
105 106 107
  std::vector<std::thread> threads;

  // data should be in input channel
108 109 110 111 112 113 114 115 116 117 118 119 120
  if (!multi_mf_dim_) {
    thread_keys_.resize(thread_keys_thread_num_);
    for (int i = 0; i < thread_keys_thread_num_; i++) {
      thread_keys_[i].resize(thread_keys_shard_num_);
    }
  } else {
    thread_dim_keys_.resize(thread_keys_thread_num_);
    for (int i = 0; i < thread_keys_thread_num_; i++) {
      thread_dim_keys_[i].resize(thread_keys_shard_num_);
      for (int j = 0; j < thread_keys_shard_num_; j++) {
        thread_dim_keys_[i][j].resize(multi_mf_dim_);
      }
    }
Y
yaoxuefeng 已提交
121
  }
Y
yaoxuefeng 已提交
122 123 124 125

  size_t total_len = 0;
  size_t len_per_thread = 0;
  int remain = 0;
Y
yaoxuefeng 已提交
126
  size_t begin = 0;
Y
yaoxuefeng 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

  std::string data_set_name = std::string(typeid(*dataset_).name());

  if (data_set_name.find("SlotRecordDataset") != std::string::npos) {
    VLOG(0) << "ps_gpu_wrapper use SlotRecordDataset";
    SlotRecordDataset* dataset = dynamic_cast<SlotRecordDataset*>(dataset_);
    auto input_channel = dataset->GetInputChannel();
    VLOG(0) << "yxf::buildtask::inputslotchannle size: "
            << input_channel->Size();
    const std::deque<SlotRecord>& vec_data = input_channel->GetData();
    total_len = vec_data.size();
    len_per_thread = total_len / thread_keys_thread_num_;
    remain = total_len % thread_keys_thread_num_;
    VLOG(0) << "total len: " << total_len;
    auto gen_func = [this](const std::deque<SlotRecord>& total_data,
                           int begin_index, int end_index, int i) {
      for (auto iter = total_data.begin() + begin_index;
           iter != total_data.begin() + end_index; iter++) {
        const auto& ins = *iter;
        const auto& feasign_v = ins->slot_uint64_feasigns_.slot_values;
        for (const auto feasign : feasign_v) {
          int shard_id = feasign % thread_keys_shard_num_;
          this->thread_keys_[i][shard_id].insert(feasign);
        }
Y
yaoxuefeng 已提交
151
      }
Y
yaoxuefeng 已提交
152
    };
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    auto gen_dynamic_mf_func = [this](const std::deque<SlotRecord>& total_data,
                                      int begin_index, int end_index, int i) {
      for (auto iter = total_data.begin() + begin_index;
           iter != total_data.begin() + end_index; iter++) {
        const auto& ins = *iter;
        const auto& feasign_v = ins->slot_uint64_feasigns_.slot_values;
        const auto& slot_offset = ins->slot_uint64_feasigns_.slot_offsets;
        for (size_t slot_idx = 0; slot_idx < slot_offset_vector_.size();
             slot_idx++) {
          for (size_t j = slot_offset[slot_offset_vector_[slot_idx]];
               j < slot_offset[slot_offset_vector_[slot_idx] + 1]; j++) {
            int shard_id = feasign_v[j] % thread_keys_shard_num_;
            int dim_id = slot_index_vec_[slot_idx];
            this->thread_dim_keys_[i][shard_id][dim_id].insert(feasign_v[j]);
          }
        }
      }
      /*
      for (auto iter = total_data.begin() + begin_index;
           iter != total_data.begin() + end_index; iter++) {
        const auto& ins = *iter;
        const auto& feasign_v = ins->slot_uint64_feasigns_.slot_values;
        for (const auto feasign : feasign_v) {
          int shard_id = feasign % thread_keys_shard_num_;
          this->thread_dim_keys_[i][shard_id][0].insert(feasign);
        }
      }
      */
    };
Y
yaoxuefeng 已提交
182
    for (int i = 0; i < thread_keys_thread_num_; i++) {
183 184 185 186 187 188 189 190 191 192 193
      if (!multi_mf_dim_) {
        VLOG(0) << "yxf::psgpu wrapper genfunc";
        threads.push_back(
            std::thread(gen_func, std::ref(vec_data), begin,
                        begin + len_per_thread + (i < remain ? 1 : 0), i));
      } else {
        VLOG(0) << "yxf::psgpu wrapper genfunc with dynamic mf";
        threads.push_back(
            std::thread(gen_dynamic_mf_func, std::ref(vec_data), begin,
                        begin + len_per_thread + (i < remain ? 1 : 0), i));
      }
Y
yaoxuefeng 已提交
194
      begin += len_per_thread + (i < remain ? 1 : 0);
Y
yaoxuefeng 已提交
195
    }
Y
yaoxuefeng 已提交
196 197 198 199
    for (std::thread& t : threads) {
      t.join();
    }
    timeline.Pause();
T
Thunderbrook 已提交
200
    VLOG(0) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
  } else {
    CHECK(data_set_name.find("MultiSlotDataset") != std::string::npos);
    VLOG(0) << "ps_gpu_wrapper use MultiSlotDataset";
    MultiSlotDataset* dataset = dynamic_cast<MultiSlotDataset*>(dataset_);
    auto input_channel = dataset->GetInputChannel();

    const std::deque<Record>& vec_data = input_channel->GetData();
    total_len = vec_data.size();
    len_per_thread = total_len / thread_keys_thread_num_;
    remain = total_len % thread_keys_thread_num_;
    auto gen_func = [this](const std::deque<Record>& total_data,
                           int begin_index, int end_index, int i) {
      for (auto iter = total_data.begin() + begin_index;
           iter != total_data.begin() + end_index; iter++) {
        const auto& ins = *iter;
        const auto& feasign_v = ins.uint64_feasigns_;
        for (const auto feasign : feasign_v) {
          uint64_t cur_key = feasign.sign().uint64_feasign_;
          int shard_id = cur_key % thread_keys_shard_num_;
          this->thread_keys_[i][shard_id].insert(cur_key);
        }
      }
    };
    for (int i = 0; i < thread_keys_thread_num_; i++) {
      threads.push_back(
          std::thread(gen_func, std::ref(vec_data), begin,
                      begin + len_per_thread + (i < remain ? 1 : 0), i));
      begin += len_per_thread + (i < remain ? 1 : 0);
    }
    for (std::thread& t : threads) {
      t.join();
    }
    timeline.Pause();
T
Thunderbrook 已提交
234
    VLOG(0) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
235 236 237 238
  }

  timeline.Start();

239
  threads.clear();
Y
yaoxuefeng 已提交
240
  // merge thread_keys to shard_keys
241 242 243 244
  auto merge_ins_func = [this, gpu_task](int shard_num) {
    for (int i = 0; i < thread_keys_thread_num_; ++i) {
      gpu_task->batch_add_keys(shard_num, thread_keys_[i][shard_num]);
      thread_keys_[i][shard_num].clear();
Y
yaoxuefeng 已提交
245
    }
246
  };
247 248 249 250 251 252 253
  auto merge_ins_dynamic_mf_func = [this, gpu_task](int shard_num, int dim_id) {
    for (int i = 0; i < thread_keys_thread_num_; ++i) {
      gpu_task->batch_add_keys(shard_num, dim_id,
                               thread_dim_keys_[i][shard_num][dim_id]);
      thread_dim_keys_[i][shard_num][dim_id].clear();
    }
  };
254 255 256 257 258 259 260
  // for (size_t i = 0; i < thread_keys_.size(); i++) {
  //  gpu_task->batch_add_keys(thread_keys_[i]);
  //  for (int j = 0; j < thread_keys_thread_num_; j++) {
  //    thread_keys_[i][j].clear();
  //  }
  //}
  for (int i = 0; i < thread_keys_shard_num_; ++i) {
261 262 263 264 265 266 267
    if (!multi_mf_dim_) {
      threads.push_back(std::thread(merge_ins_func, i));
    } else {
      for (int j = 0; j < multi_mf_dim_; j++) {
        threads.push_back(std::thread(merge_ins_dynamic_mf_func, i, j));
      }
    }
268 269 270
  }
  for (auto& t : threads) {
    t.join();
Y
yaoxuefeng 已提交
271 272 273
  }
  timeline.Pause();

274
  VLOG(0) << "GpuPs task add keys cost " << timeline.ElapsedSec()
Y
yaoxuefeng 已提交
275 276 277 278 279
          << " seconds.";
  timeline.Start();
  gpu_task->UniqueKeys();
  timeline.Pause();

280
  VLOG(0) << "GpuPs task unique cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
281

282 283 284 285 286 287 288 289 290 291 292 293 294 295
  if (!multi_mf_dim_) {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      VLOG(0) << "GpuPs shard: " << i << " key len: " << local_keys[i].size();
      local_ptr[i].resize(local_keys[i].size());
    }
  } else {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
        VLOG(0) << "GpuPs shard: " << i << "mf dim: " << index_dim_vec_[j]
                << " key len: " << gpu_task->feature_dim_keys_[i][j].size();
        gpu_task->value_dim_ptr_[i][j].resize(
            gpu_task->feature_dim_keys_[i][j].size());
      }
    }
Y
yaoxuefeng 已提交
296
  }
297 298 299 300
}

void PSGPUWrapper::BuildPull(std::shared_ptr<HeterContext> gpu_task) {
  platform::Timer timeline;
T
Thunderbrook 已提交
301
  std::vector<std::future<void>> task_futures;
302 303 304 305
  int device_num = heter_devices_.size();
  auto& local_keys = gpu_task->feature_keys_;
  auto& local_ptr = gpu_task->value_ptr_;

306 307 308
  auto& local_dim_keys = gpu_task->feature_dim_keys_;
  auto& local_dim_ptr = gpu_task->value_dim_ptr_;

309 310
  auto& device_keys = gpu_task->device_keys_;
  auto& device_vals = gpu_task->device_values_;
311 312 313 314 315 316 317 318 319
  auto& device_dim_keys = gpu_task->device_dim_keys_;
  auto& device_dim_ptr = gpu_task->device_dim_ptr_;
  auto& device_dim_mutex = gpu_task->dim_mutex_;
  if (multi_mf_dim_) {
    for (size_t dev = 0; dev < device_dim_keys.size(); dev++) {
      device_dim_keys[dev].resize(multi_mf_dim_);
      device_dim_ptr[dev].resize(multi_mf_dim_);
    }
  }
T
Thunderbrook 已提交
320
  // auto& device_mutex = gpu_task->mutex_;
321 322 323 324 325 326

  std::vector<std::thread> threads(thread_keys_shard_num_);
#ifdef PADDLE_WITH_PSLIB
  auto fleet_ptr = FleetWrapper::GetInstance();
#endif
#ifdef PADDLE_WITH_PSCORE
327
  auto fleet_ptr = paddle::distributed::FleetWrapper::GetInstance();
328
#endif
329

330
#if (defined PADDLE_WITH_PSLIB) && (defined PADDLE_WITH_HETERPS)
331 332 333 334 335 336 337 338 339 340 341
  // get day_id: day nums from 1970
  struct std::tm b;
  b.tm_year = year_ - 1900;
  b.tm_mon = month_ - 1;
  b.tm_mday = day_;
  b.tm_min = b.tm_hour = b.tm_sec = 0;
  std::time_t seconds_from_1970 = std::mktime(&b);
  int day_id = seconds_from_1970 / 86400;
  fleet_ptr->pslib_ptr_->_worker_ptr->set_day_id(table_id_, day_id);
#endif

342
  timeline.Start();
343
  auto ptl_func = [this, &local_keys, &local_ptr, &fleet_ptr](int i) {
Y
yaoxuefeng 已提交
344
    size_t key_size = local_keys[i].size();
Y
yaoxuefeng 已提交
345
    int32_t status = -1;
T
Thunderbrook 已提交
346
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
347 348 349 350 351 352
    // auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
    //    reinterpret_cast<char**>(local_ptr[i].data()), this->table_id_,
    //    local_keys[i].data(), key_size);
    int32_t cnt = 0;
    while (true) {
      auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
T
Thunderbrook 已提交
353
          i, reinterpret_cast<char**>(local_ptr[i].data()), this->table_id_,
Y
yaoxuefeng 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
          local_keys[i].data(), key_size);
      bool flag = true;

      tt.wait();

      try {
        status = tt.get();
      } catch (const std::future_error& e) {
        VLOG(0) << "Caught a future_error with code" << e.code()
                << ", Message:" << e.what();
      }
      if (status != 0) {
        VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
        sleep(sleep_seconds_before_fail_exit_);
        flag = false;
        cnt++;
      }
      if (cnt > 3) {
        VLOG(0) << "fleet pull sparse failed, retry 3 times";
        exit(-1);
      }

      if (flag) {
        break;
      }
    }
T
Thunderbrook 已提交
380 381
#endif
#ifdef PADDLE_WITH_PSCORE
Y
yaoxuefeng 已提交
382 383
    int32_t cnt = 0;
    while (true) {
Z
zhaocaibei123 已提交
384
      auto tt = fleet_ptr->worker_ptr_->PullSparsePtr(
Y
yaoxuefeng 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
          reinterpret_cast<char**>(local_ptr[i].data()), this->table_id_,
          local_keys[i].data(), key_size);
      bool flag = true;

      tt.wait();

      try {
        status = tt.get();
      } catch (const std::future_error& e) {
        VLOG(0) << "Caught a future_error with code" << e.code()
                << ", Message:" << e.what();
      }
      if (status != 0) {
        VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
        sleep(sleep_seconds_before_fail_exit_);
        flag = false;
        cnt++;
      }
      if (cnt > 3) {
        VLOG(0) << "fleet pull sparse failed, retry 3 times";
        exit(-1);
      }

      if (flag) {
        break;
      }
    }
T
Thunderbrook 已提交
412
#endif
Y
yaoxuefeng 已提交
413 414 415 416 417 418 419 420
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(300);
      exit(-1);
    } else {
      VLOG(3) << "FleetWrapper Pull sparse to local done with table size: "
              << local_keys[i].size();
    }
421
  };
422 423 424 425 426 427 428 429 430

  auto ptl_dynamic_mf_func = [this, &local_dim_keys, &local_dim_ptr,
                              &fleet_ptr](int i, int j) {
#ifdef PADDLE_WITH_PSLIB
    size_t key_size = local_dim_keys[i][j].size();
    int32_t status = -1;
    int32_t cnt = 0;
    while (true) {
      auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
T
Thunderbrook 已提交
431 432
          i, reinterpret_cast<char**>(local_dim_ptr[i][j].data()),
          this->table_id_, local_dim_keys[i][j].data(), key_size);
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
      bool flag = true;

      tt.wait();

      try {
        status = tt.get();
      } catch (const std::future_error& e) {
        VLOG(0) << "Caught a future_error with code" << e.code()
                << ", Message:" << e.what();
      }
      if (status != 0) {
        VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
        sleep(sleep_seconds_before_fail_exit_);
        flag = false;
        cnt++;
      }
      if (cnt > 3) {
        VLOG(0) << "fleet pull sparse failed, retry 3 times";
        exit(-1);
      }

      if (flag) {
        break;
      }
    }
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(300);
      exit(-1);
    } else {
      VLOG(0) << "FleetWrapper Pull sparse to local done with table size: "
              << local_dim_keys[i][j].size();
    }
#endif
  };
  if (!multi_mf_dim_) {
    for (size_t i = 0; i < threads.size(); i++) {
      threads[i] = std::thread(ptl_func, i);
    }
  } else {
    threads.resize(thread_keys_shard_num_ * multi_mf_dim_);
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
        threads[i * multi_mf_dim_ + j] = std::thread(ptl_dynamic_mf_func, i, j);
      }
    }
479 480 481 482 483
  }
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();
T
Thunderbrook 已提交
484
  VLOG(0) << "pull sparse from CpuPS into GpuPS cost " << timeline.ElapsedSec()
485
          << " seconds.";
Y
yaoxuefeng 已提交
486 487 488 489 490 491 492 493
  if (multi_node_) {
    auto gloo_wrapper = paddle::framework::GlooWrapper::GetInstance();
    if (!gloo_wrapper->IsInitialized()) {
      VLOG(0) << "GLOO is not inited";
      gloo_wrapper->Init();
    }
    gloo_wrapper->Barrier();
  }
494 495

  timeline.Start();
Y
yaoxuefeng 已提交
496 497 498
  std::vector<std::vector<std::pair<uint64_t, char*>>> pass_values;

  bool record_status = false;
499 500
#ifdef PADDLE_WITH_PSLIB
  uint16_t pass_id = 0;
Y
yaoxuefeng 已提交
501 502 503 504
  if (multi_node_) {
    record_status = fleet_ptr->pslib_ptr_->_worker_ptr->take_sparse_record(
        table_id_, pass_id, pass_values);
  }
505
#endif
T
Thunderbrook 已提交
506 507
  auto& device_task_keys = gpu_task->device_task_keys_;
  auto& device_task_ptrs = gpu_task->device_task_ptr_;
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
  auto build_dynamic_mf_func = [this, device_num, &local_dim_keys,
                                &local_dim_ptr, &device_dim_keys,
                                &device_dim_ptr,
                                &device_dim_mutex](int i, int j) {
#ifdef PADDLE_WITH_PSLIB
    std::vector<std::vector<FeatureKey>> task_keys(device_num);
    std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> task_ptrs(
        device_num);
    for (size_t k = 0; k < local_dim_keys[i][j].size(); k++) {
      int shard = local_dim_keys[i][j][k] % device_num;
      task_keys[shard].push_back(local_dim_keys[i][j][k]);
      task_ptrs[shard].push_back(local_dim_ptr[i][j][k]);
    }
    for (int dev = 0; dev < device_num; dev++) {
      for (int dim = 0; dim < multi_mf_dim_; dim++) {
        device_dim_mutex[dev][dim]->lock();

        int len = task_keys[dev].size();
        int cur = device_dim_keys[dev][dim].size();
        device_dim_keys[dev][dim].resize(device_dim_keys[dev][dim].size() +
                                         len);
        device_dim_ptr[dev][dim].resize(device_dim_ptr[dev][dim].size() + len);
        for (int k = 0; k < len; ++k) {
          device_dim_keys[dev][dim][cur + k] = task_keys[dev][k];
          device_dim_ptr[dev][dim][cur + k] = task_ptrs[dev][k];
        }
        device_dim_mutex[dev][dim]->unlock();
      }
    }
#endif
  };
Y
yaoxuefeng 已提交
539
  auto build_func = [device_num, record_status, &pass_values, &local_keys,
T
Thunderbrook 已提交
540 541
                     &local_ptr, &device_task_keys, &device_task_ptrs](int i) {
    auto& task_keys = device_task_keys[i];
T
Thunderbrook 已提交
542
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
543
    auto& task_ptrs = device_task_ptrs[i];
T
Thunderbrook 已提交
544 545 546
#endif

#ifdef PADDLE_WITH_PSCORE
T
Thunderbrook 已提交
547
    auto& task_ptrs = device_task_ptrs[i];
T
Thunderbrook 已提交
548
#endif
549 550 551 552 553 554

    for (size_t j = 0; j < local_keys[i].size(); j++) {
      int shard = local_keys[i][j] % device_num;
      task_keys[shard].push_back(local_keys[i][j]);
      task_ptrs[shard].push_back(local_ptr[i][j]);
    }
555
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
    if (record_status) {
      size_t local_keys_size = local_keys.size();
      size_t pass_values_size = pass_values.size();
      for (size_t j = 0; j < pass_values_size; j += local_keys_size) {
        auto& shard_values = pass_values[j];
        for (size_t pair_idx = 0; pair_idx < pass_values[j].size();
             pair_idx++) {
          auto& cur_pair = shard_values[pair_idx];
          int shard = cur_pair.first % device_num;
          task_keys[shard].push_back(cur_pair.first);
          task_ptrs[shard].push_back(
              (paddle::ps::DownpourFixedFeatureValue*)cur_pair.second);
        }
      }
    }
571
#endif
T
Thunderbrook 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
  };
  if (!multi_mf_dim_) {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      task_futures.emplace_back(hbm_thread_pool_[i]->enqueue(build_func, i));
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
    VLOG(0) << "GpuPs build hbmps done";
  }
  std::vector<std::vector<int>> prefix_sum;
  prefix_sum.resize(device_num);
  for (int i = 0; i < device_num; i++) {
    prefix_sum[i].resize(thread_keys_shard_num_ + 1);
    prefix_sum[i][0] = 0;
  }
  auto calc_prefix_func = [this, &prefix_sum, &device_keys, &device_vals,
                           &device_task_keys](int device_num) {
    for (int j = 0; j < thread_keys_shard_num_; j++) {
      prefix_sum[device_num][j + 1] =
          prefix_sum[device_num][j] + device_task_keys[j][device_num].size();
    }
    device_keys[device_num].resize(
        prefix_sum[device_num][thread_keys_shard_num_]);
    device_vals[device_num].resize(
        prefix_sum[device_num][thread_keys_shard_num_]);
  };
  if (!multi_mf_dim_) {
    for (int i = 0; i < device_num; i++) {
      task_futures.emplace_back(
          hbm_thread_pool_[i]->enqueue(calc_prefix_func, i));
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
  }
  VLOG(0) << "prefix done";
  auto prepare_dev_value_func = [device_num, &prefix_sum, &device_keys,
                                 &device_vals, &device_task_keys,
                                 &device_task_ptrs](int dev, int shard_id) {
    auto& task_keys = device_task_keys[shard_id];
#ifdef PADDLE_WITH_PSLIB
    auto& task_ptrs = device_task_ptrs[shard_id];
#endif

#ifdef PADDLE_WITH_PSCORE
    auto& task_ptrs = device_task_ptrs[dev];
#endif
622

T
Thunderbrook 已提交
623 624
    int len = prefix_sum[dev][shard_id + 1] - prefix_sum[dev][shard_id];
    int cur = prefix_sum[dev][shard_id];
T
Thunderbrook 已提交
625
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    for (int j = 0; j < len; ++j) {
      device_keys[dev][cur + j] = task_keys[dev][j];
      float* ptr_val = task_ptrs[dev][j]->data();
      FeatureValue& val = device_vals[dev][cur + j];
      size_t dim = task_ptrs[dev][j]->size();

      val.delta_score = ptr_val[1];
      val.show = ptr_val[2];
      val.clk = ptr_val[3];
      val.slot = ptr_val[6];
      val.lr = ptr_val[4];
      val.lr_g2sum = ptr_val[5];
      val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);

      if (dim > 7) {
        val.mf_size = MF_DIM + 1;
        for (int x = 0; x < val.mf_size; x++) {
          val.mf[x] = ptr_val[x + 7];
        }
      } else {
        val.mf_size = 0;
        for (int x = 0; x < MF_DIM + 1; x++) {
          val.mf[x] = 0;
Y
yaoxuefeng 已提交
649 650
        }
      }
T
Thunderbrook 已提交
651
    }
T
Thunderbrook 已提交
652 653
#endif
#ifdef PADDLE_WITH_PSCORE
T
Thunderbrook 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
    for (int j = 0; j < len; ++j) {
      device_keys[dev][cur + j] = task_keys[dev][j];
      float* ptr_val = task_ptrs[dev][j]->data();
      FeatureValue& val = device_vals[dev][cur + j];
      size_t dim = task_ptrs[dev][j]->size();
      val.delta_score = ptr_val[2];
      val.show = ptr_val[3];
      val.clk = ptr_val[4];
      val.slot = ptr_val[0];
      val.lr = ptr_val[5];
      val.lr_g2sum = ptr_val[6];
      val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);

      if (dim > 7) {
        val.mf_size = MF_DIM + 1;
        for (int x = 0; x < val.mf_size; x++) {
          val.mf[x] = ptr_val[x + 7];
        }
      } else {
        val.mf_size = 0;
        for (int x = 0; x < MF_DIM + 1; x++) {
          val.mf[x] = 0;
T
Thunderbrook 已提交
676 677
        }
      }
T
Thunderbrook 已提交
678
    }
T
Thunderbrook 已提交
679
#endif
T
Thunderbrook 已提交
680
    VLOG(3) << "GpuPs build hbmps done";
681

Y
yaoxuefeng 已提交
682
  };
683

T
Thunderbrook 已提交
684
  if (multi_mf_dim_) {
685 686 687 688 689 690
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
        threads[i * multi_mf_dim_ + j] =
            std::thread(build_dynamic_mf_func, i, j);
      }
    }
T
Thunderbrook 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704
    for (std::thread& t : threads) {
      t.join();
    }
  } else {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < device_num; j++) {
        task_futures.emplace_back(
            hbm_thread_pool_[i]->enqueue(prepare_dev_value_func, j, i));
      }
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
Y
yaoxuefeng 已提交
705 706
  }
  timeline.Pause();
T
Thunderbrook 已提交
707
  VLOG(0) << "GpuPs prepare for build hbm cost " << timeline.ElapsedSec()
708
          << " seconds.";
Y
yaoxuefeng 已提交
709 710
}

711
void PSGPUWrapper::BuildGPUTask(std::shared_ptr<HeterContext> gpu_task) {
712
  int device_num = heter_devices_.size();
Y
yaoxuefeng 已提交
713 714
  platform::Timer timeline;
  timeline.Start();
T
Thunderbrook 已提交
715

716
  std::vector<size_t> feature_keys_count(device_num);
T
Thunderbrook 已提交
717
  size_t size_max = 0;
718 719 720
  if (!multi_mf_dim_) {
    for (int i = 0; i < device_num; i++) {
      feature_keys_count[i] = gpu_task->device_keys_[i].size();
721
      VLOG(0) << i << " card contains feasign nums: " << feature_keys_count[i];
722 723 724 725 726 727 728
      size_max = std::max(size_max, feature_keys_count[i]);
    }
  } else {
    for (int i = 0; i < device_num; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
        feature_keys_count[i] += gpu_task->device_dim_ptr_[i][j].size();
      }
729
      VLOG(0) << i << " card with dynamic mf contains feasign nums: "
730 731 732
              << feature_keys_count[i];
      size_max = std::max(size_max, feature_keys_count[i]);
    }
T
Thunderbrook 已提交
733 734
  }
  if (HeterPs_) {
735 736
    delete HeterPs_;
    HeterPs_ = nullptr;
T
Thunderbrook 已提交
737
  }
738
  if (size_max <= 0) {
739
    VLOG(0) << "Skip build gpu ps cause feasign nums = " << size_max;
740 741
    return;
  }
742
  std::vector<std::thread> threads(device_num);
T
Thunderbrook 已提交
743
  HeterPs_ = HeterPsBase::get_instance(size_max, resource_);
744
  HeterPs_->set_nccl_comm_and_size(inner_comms_, inter_comms_, node_size_);
Y
yaoxuefeng 已提交
745
  auto build_func = [this, &gpu_task, &feature_keys_count](int i) {
746
    VLOG(3) << "building table: " << i;
747 748 749
    this->HeterPs_->build_ps(i, gpu_task->device_keys_[i].data(),
                             gpu_task->device_values_[i].data(),
                             feature_keys_count[i], 500000, 2);
750 751 752
    // if (feature_keys_count[i] > 0) {
    //   HeterPs_->show_one_table(i);
    // }
Y
yaoxuefeng 已提交
753 754 755 756 757 758
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(build_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
T
Thunderbrook 已提交
759 760
  }
  timeline.Pause();
761
  VLOG(0) << "GpuPs build table total costs: " << timeline.ElapsedSec()
T
Thunderbrook 已提交
762
          << " s.";
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
}

void PSGPUWrapper::LoadIntoMemory(bool is_shuffle) {
  platform::Timer timer;
  VLOG(3) << "Begin LoadIntoMemory(), dataset[" << dataset_ << "]";
  timer.Start();
  dataset_->LoadIntoMemory();
  timer.Pause();
  VLOG(0) << "LoadIntoMemory cost: " << timer.ElapsedSec() << "s";

  // local shuffle
  if (is_shuffle) {
    dataset_->LocalShuffle();
  }

  std::shared_ptr<HeterContext> gpu_task = gpu_task_pool_.Get();
  gpu_task->Reset();
  data_ready_channel_->Put(gpu_task);
  VLOG(3) << "End LoadIntoMemory(), dataset[" << dataset_ << "]";
}

void PSGPUWrapper::start_build_thread() {
  running_ = true;
786
  VLOG(3) << "start build CPU ps thread.";
787
  pre_build_threads_ = std::thread([this] { pre_build_thread(); });
788 789
}

790 791
void PSGPUWrapper::pre_build_thread() {
  // prebuild: process load_data
792 793 794 795 796
  while (running_) {
    std::shared_ptr<HeterContext> gpu_task = nullptr;
    if (!data_ready_channel_->Get(gpu_task)) {
      continue;
    }
797
    VLOG(3) << "thread PreBuildTask start.";
798 799 800
    platform::Timer timer;
    timer.Start();
    // build cpu ps data process
801
    PreBuildTask(gpu_task);
802
    timer.Pause();
803
    VLOG(0) << "thread PreBuildTask end, cost time: " << timer.ElapsedSec()
T
Thunderbrook 已提交
804
            << " s";
805 806 807 808 809
    buildcpu_ready_channel_->Put(gpu_task);
  }
  VLOG(3) << "build cpu thread end";
}

810 811 812 813 814 815 816 817 818 819
void PSGPUWrapper::build_task() {
  // build_task: build_pull + build_gputask
  std::shared_ptr<HeterContext> gpu_task = nullptr;
  // train end, gpu free
  if (!gpu_free_channel_->Get(gpu_task)) {
    return;
  }
  // ins and pre_build end
  if (!buildcpu_ready_channel_->Get(gpu_task)) {
    return;
820
  }
821

822
  VLOG(0) << "BuildPull start.";
823 824 825 826 827
  platform::Timer timer;
  timer.Start();
  BuildPull(gpu_task);
  BuildGPUTask(gpu_task);
  timer.Pause();
828
  VLOG(0) << "BuildPull + BuildGPUTask end, cost time: " << timer.ElapsedSec()
829 830 831
          << "s";

  current_task_ = gpu_task;
832 833 834 835 836 837 838 839 840
}

void PSGPUWrapper::BeginPass() {
  platform::Timer timer;
  timer.Start();
  if (current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[BeginPass] current task is not ended."));
  }
841 842

  build_task();
843
  timer.Pause();
844 845 846 847 848 849

  if (current_task_ == nullptr) {
    PADDLE_THROW(platform::errors::Fatal(
        "[BeginPass] after build_task, current task is not null."));
  }

T
Thunderbrook 已提交
850
  VLOG(0) << "BeginPass end, cost time: " << timer.ElapsedSec() << "s";
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
}

void PSGPUWrapper::EndPass() {
  if (!current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[EndPass] current task has been ended."));
  }
  platform::Timer timer;
  timer.Start();
  size_t keysize_max = 0;
  // in case of feasign_num = 0, skip dump_to_cpu
  for (size_t i = 0; i < heter_devices_.size(); i++) {
    keysize_max = std::max(keysize_max, current_task_->device_keys_[i].size());
  }
  if (keysize_max != 0) {
    HeterPs_->end_pass();
  }
868 869

  gpu_task_pool_.Push(current_task_);
870 871 872
  current_task_ = nullptr;
  gpu_free_channel_->Put(current_task_);
  timer.Pause();
T
Thunderbrook 已提交
873
  VLOG(0) << "EndPass end, cost time: " << timer.ElapsedSec() << "s";
T
Thunderbrook 已提交
874 875 876 877 878 879 880 881 882 883 884 885 886 887
}

void PSGPUWrapper::PullSparse(const paddle::platform::Place& place,
                              const int table_id,
                              const std::vector<const uint64_t*>& keys,
                              const std::vector<float*>& values,
                              const std::vector<int64_t>& slot_lengths,
                              const int hidden_size) {
  VLOG(3) << "Begine Gpu Ps PullSparse";
  platform::Timer all_timer;
  platform::Timer pull_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
888
  auto buf = memory::Alloc(place, total_length * sizeof(FeatureValue));
T
Thunderbrook 已提交
889 890 891 892 893 894
  FeatureValue* total_values_gpu = reinterpret_cast<FeatureValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GpuPs now."));
  } else if (platform::is_gpu_place(place)) {
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
895
    int device_id = place.GetDeviceId();
T
Thunderbrook 已提交
896 897 898 899 900 901 902 903 904 905
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys = reinterpret_cast<uint64_t*>(
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }
906
    auto buf_key = memory::Alloc(place, keys.size() * sizeof(uint64_t*));
T
Thunderbrook 已提交
907
    auto buf_length =
908
        memory::Alloc(place, slot_lengths.size() * sizeof(int64_t));
T
Thunderbrook 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
    uint64_t** gpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
    cudaMemcpy(gpu_keys, keys.data(), keys.size() * sizeof(uint64_t*),
               cudaMemcpyHostToDevice);
    cudaMemcpy(gpu_len, slot_lengths_lod.data(),
               slot_lengths.size() * sizeof(int64_t), cudaMemcpyHostToDevice);

    this->CopyKeys(place, gpu_keys, total_keys, gpu_len,
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    pull_gpups_timer.Start();
    HeterPs_->pull_sparse(devid_2_index, total_keys, total_values_gpu,
                          static_cast<int>(total_length));
    // PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
    //                              "PullSparseGPU failed in GPUPS."));
    pull_gpups_timer.Pause();

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";
    this->CopyForPull(place, gpu_keys, values, total_values_gpu, gpu_len,
                      static_cast<int>(slot_lengths.size()), hidden_size,
                      total_length);
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GpuPs: PullSparse Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
938
  VLOG(3) << "GpuPs PullSparse total costs: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
          << " s, of which GPUPS costs: " << pull_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PullSparse";
}

void PSGPUWrapper::PushSparseGrad(const paddle::platform::Place& place,
                                  const int table_id,
                                  const std::vector<const uint64_t*>& keys,
                                  const std::vector<const float*>& grad_values,
                                  const std::vector<int64_t>& slot_lengths,
                                  const int hidden_size, const int batch_size) {
  VLOG(3) << "Begin GPUPS PushSparseGrad";
  platform::Timer all_timer;
  platform::Timer push_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
956
  auto buf = memory::Alloc(place, total_length * sizeof(FeaturePushValue));
T
Thunderbrook 已提交
957 958 959 960 961 962
  FeaturePushValue* total_grad_values_gpu =
      reinterpret_cast<FeaturePushValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GPUPS now."));
  } else if (platform::is_gpu_place(place)) {
963
    int device_id = place.GetDeviceId();
T
Thunderbrook 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& cached_total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(cached_total_keys_tensor.data<int64_t>());
    VLOG(3) << "Begin copy grad tensor to gpups struct";
    this->CopyForPush(place, grad_values, total_grad_values_gpu, slot_lengths,
                      hidden_size, total_length, batch_size);

    VLOG(3) << "Begin call PushSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    push_gpups_timer.Start();
    HeterPs_->push_sparse(devid_2_index, total_keys, total_grad_values_gpu,
                          static_cast<int>(total_length));
    push_gpups_timer.Pause();
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GPUPS: PushSparseGrad Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
983
  VLOG(3) << "PushSparseGrad total cost: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
984 985 986 987 988 989 990 991
          << " s, of which GPUPS cost: " << push_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PushSparseGrad";
}

}  // end namespace framework
}  // end namespace paddle
#endif