concat_mkldnn_op.cc 8.9 KB
Newer Older
M
Michal Gallus 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

M
Michal Gallus 已提交
15
#include <memory>
M
Michal Gallus 已提交
16 17
#include "paddle/fluid/operators/concat_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
M
Michal Gallus 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

using framework::DataLayout;
using framework::Tensor;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::concat;
using mkldnn::stream;
using platform::to_void_cast;

static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
  for (auto* input : inputs) {
33 34 35 36
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");
M
Michal Gallus 已提交
37 38 39
  }
}

40
static memory::primitive_desc CreateMemPrimDesc(const Tensor& input,
41 42
                                                const mkldnn::engine& engine,
                                                const memory::data_type& dt) {
43
  const auto dims = paddle::framework::vectorize<int>(input.dims());
M
Michal Gallus 已提交
44
  const auto format = input.format();
45
  auto description = memory::desc(dims, dt, format);
M
Michal Gallus 已提交
46 47 48 49
  auto mem_prim_desc = memory::primitive_desc(description, engine);
  return mem_prim_desc;
}

50
static MKLDNNMemoryFormat GetDstMemFormat(
51
    const concat::primitive_desc& concat_pd) {
52
  return (MKLDNNMemoryFormat)concat_pd.dst_primitive_desc().desc().data.format;
53 54
}

M
Michal Gallus 已提交
55 56 57 58 59 60 61 62
static platform::CPUPlace GetCpuPlace(
    const paddle::framework::ExecutionContext& ctx) {
  auto place = ctx.GetPlace();
  PADDLE_ENFORCE(paddle::platform::is_cpu_place(place),
                 "It must use CPUPlace.");
  return boost::get<platform::CPUPlace>(place);
}

M
Michal Gallus 已提交
63
static const mkldnn::engine& GetMKLDNNEngine(
64 65 66
    const paddle::framework::ExecutionContext& ctx) {
  auto& dev_ctx = ctx.template device_context<platform::MKLDNNDeviceContext>();
  return dev_ctx.GetEngine();
M
Michal Gallus 已提交
67
}
M
Michal Gallus 已提交
68

69 70 71 72 73 74 75
std::string CreateKey(const paddle::framework::ExecutionContext& ctx,
                      const std::vector<const Tensor*> multi_input,
                      const int64_t& concat_axis, const memory::data_type& dt) {
  std::string key;
  key.reserve(platform::MKLDNNHandler::MaxKeyLength);
  for (size_t i = 0; i < multi_input.size(); i++) {
    platform::MKLDNNHandler::AppendKeyDims(
76
        &key, paddle::framework::vectorize<int>(multi_input[i]->dims()));
77 78 79 80
  }
  platform::MKLDNNHandler::AppendKey(&key, std::to_string(concat_axis));
  platform::MKLDNNHandler::AppendKey(&key, ctx.op().Output("Out"));
  platform::MKLDNNHandler::AppendKey(&key, std::to_string(dt));
81 82
  platform::MKLDNNHandler::AppendKey(&key,
                                     std::to_string(multi_input[0]->format()));
83 84
  if (platform::get_cur_mkldnn_session_id() ==
      platform::kMKLDNNSessionID_Default) {
85
    platform::MKLDNNHandler::AppendKey(&key, "-t:");
86 87
    platform::MKLDNNHandler::AppendKey(
        &key, platform::MKLDNNHandler::ThreadIDasStr());
88
  }
89 90 91
  return key;
}

M
Michal Gallus 已提交
92 93 94 95 96
template <typename T>
class ConcatPrimitiveFactory {
 public:
  concat::primitive_desc CreateConcatPrimDescriptor(
      const std::vector<const Tensor*> multi_input, Tensor* output,
97 98 99 100
      int concat_axis, const mkldnn::engine& mkldnn_engine,
      const memory::data_type& dt = memory::data_type::f32) {
    CreateSourcesDescriptors(multi_input, mkldnn_engine, dt);
    auto dst_desc = CreateDstMemDescriptor(output, dt);
M
Michal Gallus 已提交
101 102
    return concat::primitive_desc(dst_desc, concat_axis, srcs_pd);
  }
M
Michal Gallus 已提交
103

M
Michal Gallus 已提交
104 105 106
  concat CreateConcatPrimitive(const concat::primitive_desc& concat_pd,
                               Tensor* output, platform::CPUPlace place) {
    CreateSourcePrimitiveAts();
107 108
    dst_mem = CreateDstMemory(concat_pd, output, place);
    return concat(concat_pd, inputs, dst_mem.get());
M
Michal Gallus 已提交
109 110
  }

111 112 113 114 115 116 117 118 119 120 121 122 123
  void SetSrcDataHandleByIndex(const std::vector<memory>& srcs, const size_t& i,
                               void* handler) {
    srcs[i].set_data_handle(handler);
  }

  void SetDstDataHandle(const memory& dst_mem, void* handler) {
    dst_mem.set_data_handle(handler);
  }

  std::vector<memory> GetSrcs() { return srcs; }

  memory GetDst() { return dst_mem.get(); }

M
Michal Gallus 已提交
124
 private:
125 126
  memory::desc CreateDstMemDescriptor(Tensor* output,
                                      const memory::data_type& dt) {
127
    auto dst_dims = paddle::framework::vectorize<int>(output->dims());
128
    return memory::desc(dst_dims, dt, MKLDNNMemoryFormat::any);
M
Michal Gallus 已提交
129 130 131
  }

  mkldnn::memory CreateDstMemory(const concat::primitive_desc& concat_pd,
132 133
                                 Tensor* output,
                                 const platform::CPUPlace& place) {
M
Michal Gallus 已提交
134 135 136
    return memory(concat_pd.dst_primitive_desc(),
                  output->mutable_data<T>(place));
  }
M
Michal Gallus 已提交
137

M
Michal Gallus 已提交
138
  void CreateSourcesDescriptors(const std::vector<const Tensor*> multi_input,
139 140
                                const mkldnn::engine& mkldnn_engine,
                                const memory::data_type& dt) {
M
Michal Gallus 已提交
141
    for (size_t i = 0; i < multi_input.size(); i++) {
142 143
      auto mem_prim_desc =
          CreateMemPrimDesc(*multi_input[i], mkldnn_engine, dt);
144 145 146
      srcs_pd.push_back(mem_prim_desc);
      srcs.push_back(
          memory(mem_prim_desc, to_void_cast(multi_input[i]->data<T>())));
M
Michal Gallus 已提交
147
    }
M
Michal Gallus 已提交
148
  }
M
Michal Gallus 已提交
149

M
Michal Gallus 已提交
150
  void CreateSourcePrimitiveAts() {
M
Michal Gallus 已提交
151 152 153 154
    inputs.reserve(srcs.size());
    for (size_t i = 0; i < srcs.size(); i++) {
      inputs.push_back(srcs[i]);
    }
M
Michal Gallus 已提交
155 156 157 158 159 160
  }

 private:
  std::vector<memory::primitive_desc> srcs_pd;
  std::vector<memory> srcs;
  std::vector<primitive::at> inputs;
161 162
  boost::optional<memory> dst_mem;
};
M
Michal Gallus 已提交
163 164 165 166 167 168 169 170 171

template <typename T>
class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    auto multi_input = ctx.MultiInput<Tensor>("X");
    EnforceLayouts(multi_input);
    Tensor* output = ctx.Output<Tensor>("Out");
    int64_t concat_axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
172 173 174 175 176 177
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    auto place = GetCpuPlace(ctx);

    memory::data_type dt =
        paddle::framework::ToMKLDNNDataType(multi_input[0]->type());
M
Michal Gallus 已提交
178 179

    ConcatPrimitiveFactory<T> prim_creator;
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    std::string key = CreateKey(ctx, multi_input, concat_axis, dt);
    const std::string key_prim = key + "@concat_p";
    const std::string key_concat_pd = key + "@concat_pd";
    const std::string key_srcs = key + "@concat_srcs";
    const std::string key_dst = key + "@concat_dst";

    std::shared_ptr<concat::primitive_desc> concat_pd;
    std::shared_ptr<std::vector<memory>> srcs;
    std::shared_ptr<memory> dst_mem;
    auto concat_p = std::static_pointer_cast<concat>(dev_ctx.GetBlob(key_prim));

    if (concat_p == nullptr) {
      const auto& mkldnn_engine = dev_ctx.GetEngine();
      concat_pd = std::make_shared<concat::primitive_desc>(
          prim_creator.CreateConcatPrimDescriptor(multi_input, output,
                                                  static_cast<int>(concat_axis),
                                                  mkldnn_engine, dt));
      concat_p = std::make_shared<concat>(
          prim_creator.CreateConcatPrimitive(*concat_pd, output, place));
      srcs = std::make_shared<std::vector<memory>>(prim_creator.GetSrcs());
      dst_mem = std::make_shared<memory>(prim_creator.GetDst());
      dev_ctx.SetBlob(key_prim, concat_p);
      dev_ctx.SetBlob(key_concat_pd, concat_pd);
      dev_ctx.SetBlob(key_srcs, srcs);
      dev_ctx.SetBlob(key_dst, dst_mem);
    } else {
      srcs = std::static_pointer_cast<std::vector<memory>>(
          dev_ctx.GetBlob(key_srcs));
      dst_mem = std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_dst));
      concat_pd = std::static_pointer_cast<concat::primitive_desc>(
          dev_ctx.GetBlob(key_concat_pd));
      for (size_t i = 0; i < multi_input.size(); i++) {
        prim_creator.SetSrcDataHandleByIndex(
            *srcs, i, to_void_cast<T>(multi_input[i]->data<T>()));
      }
      prim_creator.SetDstDataHandle(*dst_mem, output->mutable_data<T>(place));
    }

    stream(stream::kind::eager).submit({*concat_p}).wait();
M
Michal Gallus 已提交
219

220 221
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetDstMemFormat(*concat_pd));
M
Michal Gallus 已提交
222 223 224 225 226 227 228 229
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(concat, MKLDNN, ::paddle::platform::CPUPlace,
230 231 232
                   ops::ConcatMKLDNNOpKernel<float>,
                   ops::ConcatMKLDNNOpKernel<int8_t>,
                   ops::ConcatMKLDNNOpKernel<uint8_t>);