concat_mkldnn_op.cc 9.0 KB
Newer Older
M
Michal Gallus 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

M
Michal Gallus 已提交
15
#include <memory>
M
Michal Gallus 已提交
16 17
#include "paddle/fluid/operators/concat_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
M
Michal Gallus 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {

using framework::DataLayout;
using framework::Tensor;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::concat;
using mkldnn::stream;
using platform::to_void_cast;

static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
  for (auto* input : inputs) {
    const bool is_layout_correct = input->layout() == DataLayout::kMKLDNN;
34 35
    const bool is_format_defined =
        input->format() != memory::format::format_undef;
M
Michal Gallus 已提交
36 37 38 39 40
    PADDLE_ENFORCE(is_layout_correct && is_format_defined,
                   "Wrong layout/format set for Input tensor");
  }
}

41
static memory::primitive_desc CreateMemPrimDesc(const Tensor& input,
42 43
                                                const mkldnn::engine& engine,
                                                const memory::data_type& dt) {
M
Michal Gallus 已提交
44 45
  const auto dims = paddle::framework::vectorize2int(input.dims());
  const auto format = input.format();
46
  auto description = memory::desc(dims, dt, format);
M
Michal Gallus 已提交
47 48 49 50
  auto mem_prim_desc = memory::primitive_desc(description, engine);
  return mem_prim_desc;
}

51 52 53 54 55
static mkldnn::memory::format GetDstMemFormat(
    const concat::primitive_desc& concat_pd) {
  return (memory::format)concat_pd.dst_primitive_desc().desc().data.format;
}

M
Michal Gallus 已提交
56 57 58 59 60 61 62 63
static platform::CPUPlace GetCpuPlace(
    const paddle::framework::ExecutionContext& ctx) {
  auto place = ctx.GetPlace();
  PADDLE_ENFORCE(paddle::platform::is_cpu_place(place),
                 "It must use CPUPlace.");
  return boost::get<platform::CPUPlace>(place);
}

M
Michal Gallus 已提交
64
static const mkldnn::engine& GetMKLDNNEngine(
65 66 67
    const paddle::framework::ExecutionContext& ctx) {
  auto& dev_ctx = ctx.template device_context<platform::MKLDNNDeviceContext>();
  return dev_ctx.GetEngine();
M
Michal Gallus 已提交
68
}
M
Michal Gallus 已提交
69

70 71 72 73 74 75 76 77 78 79 80 81
std::string CreateKey(const paddle::framework::ExecutionContext& ctx,
                      const std::vector<const Tensor*> multi_input,
                      const int64_t& concat_axis, const memory::data_type& dt) {
  std::string key;
  key.reserve(platform::MKLDNNHandler::MaxKeyLength);
  for (size_t i = 0; i < multi_input.size(); i++) {
    platform::MKLDNNHandler::AppendKeyDims(
        &key, paddle::framework::vectorize2int(multi_input[i]->dims()));
  }
  platform::MKLDNNHandler::AppendKey(&key, std::to_string(concat_axis));
  platform::MKLDNNHandler::AppendKey(&key, ctx.op().Output("Out"));
  platform::MKLDNNHandler::AppendKey(&key, std::to_string(dt));
82 83
  platform::MKLDNNHandler::AppendKey(&key,
                                     std::to_string(multi_input[0]->format()));
84 85 86 87 88 89 90
  if (platform::get_cur_thread_id() != -1) {
    auto tid = std::this_thread::get_id();
    std::stringstream ss;
    ss << tid;
    platform::MKLDNNHandler::AppendKey(&key, "-t:");
    platform::MKLDNNHandler::AppendKey(&key, ss.str());
  }
91 92 93
  return key;
}

M
Michal Gallus 已提交
94 95 96 97 98
template <typename T>
class ConcatPrimitiveFactory {
 public:
  concat::primitive_desc CreateConcatPrimDescriptor(
      const std::vector<const Tensor*> multi_input, Tensor* output,
99 100 101 102
      int concat_axis, const mkldnn::engine& mkldnn_engine,
      const memory::data_type& dt = memory::data_type::f32) {
    CreateSourcesDescriptors(multi_input, mkldnn_engine, dt);
    auto dst_desc = CreateDstMemDescriptor(output, dt);
M
Michal Gallus 已提交
103 104
    return concat::primitive_desc(dst_desc, concat_axis, srcs_pd);
  }
M
Michal Gallus 已提交
105

M
Michal Gallus 已提交
106 107 108
  concat CreateConcatPrimitive(const concat::primitive_desc& concat_pd,
                               Tensor* output, platform::CPUPlace place) {
    CreateSourcePrimitiveAts();
109 110
    dst_mem = CreateDstMemory(concat_pd, output, place);
    return concat(concat_pd, inputs, dst_mem.get());
M
Michal Gallus 已提交
111 112
  }

113 114 115 116 117 118 119 120 121 122 123 124 125
  void SetSrcDataHandleByIndex(const std::vector<memory>& srcs, const size_t& i,
                               void* handler) {
    srcs[i].set_data_handle(handler);
  }

  void SetDstDataHandle(const memory& dst_mem, void* handler) {
    dst_mem.set_data_handle(handler);
  }

  std::vector<memory> GetSrcs() { return srcs; }

  memory GetDst() { return dst_mem.get(); }

M
Michal Gallus 已提交
126
 private:
127 128
  memory::desc CreateDstMemDescriptor(Tensor* output,
                                      const memory::data_type& dt) {
M
Michal Gallus 已提交
129
    auto dst_dims = paddle::framework::vectorize2int(output->dims());
130
    return memory::desc(dst_dims, dt, memory::format::any);
M
Michal Gallus 已提交
131 132 133
  }

  mkldnn::memory CreateDstMemory(const concat::primitive_desc& concat_pd,
134 135
                                 Tensor* output,
                                 const platform::CPUPlace& place) {
M
Michal Gallus 已提交
136 137 138
    return memory(concat_pd.dst_primitive_desc(),
                  output->mutable_data<T>(place));
  }
M
Michal Gallus 已提交
139

M
Michal Gallus 已提交
140
  void CreateSourcesDescriptors(const std::vector<const Tensor*> multi_input,
141 142
                                const mkldnn::engine& mkldnn_engine,
                                const memory::data_type& dt) {
M
Michal Gallus 已提交
143
    for (size_t i = 0; i < multi_input.size(); i++) {
144 145
      auto mem_prim_desc =
          CreateMemPrimDesc(*multi_input[i], mkldnn_engine, dt);
146 147 148
      srcs_pd.push_back(mem_prim_desc);
      srcs.push_back(
          memory(mem_prim_desc, to_void_cast(multi_input[i]->data<T>())));
M
Michal Gallus 已提交
149
    }
M
Michal Gallus 已提交
150
  }
M
Michal Gallus 已提交
151

M
Michal Gallus 已提交
152
  void CreateSourcePrimitiveAts() {
M
Michal Gallus 已提交
153 154 155 156
    inputs.reserve(srcs.size());
    for (size_t i = 0; i < srcs.size(); i++) {
      inputs.push_back(srcs[i]);
    }
M
Michal Gallus 已提交
157 158 159 160 161 162
  }

 private:
  std::vector<memory::primitive_desc> srcs_pd;
  std::vector<memory> srcs;
  std::vector<primitive::at> inputs;
163 164
  boost::optional<memory> dst_mem;  // TODO(mgallus): change to std::optional
};                                  // upon introduction of C++17 to paddle
M
Michal Gallus 已提交
165 166 167 168 169 170 171 172 173

template <typename T>
class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    auto multi_input = ctx.MultiInput<Tensor>("X");
    EnforceLayouts(multi_input);
    Tensor* output = ctx.Output<Tensor>("Out");
    int64_t concat_axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
174 175 176 177 178 179
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    auto place = GetCpuPlace(ctx);

    memory::data_type dt =
        paddle::framework::ToMKLDNNDataType(multi_input[0]->type());
M
Michal Gallus 已提交
180 181

    ConcatPrimitiveFactory<T> prim_creator;
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    std::string key = CreateKey(ctx, multi_input, concat_axis, dt);
    const std::string key_prim = key + "@concat_p";
    const std::string key_concat_pd = key + "@concat_pd";
    const std::string key_srcs = key + "@concat_srcs";
    const std::string key_dst = key + "@concat_dst";

    std::shared_ptr<concat::primitive_desc> concat_pd;
    std::shared_ptr<std::vector<memory>> srcs;
    std::shared_ptr<memory> dst_mem;
    auto concat_p = std::static_pointer_cast<concat>(dev_ctx.GetBlob(key_prim));

    if (concat_p == nullptr) {
      const auto& mkldnn_engine = dev_ctx.GetEngine();
      concat_pd = std::make_shared<concat::primitive_desc>(
          prim_creator.CreateConcatPrimDescriptor(multi_input, output,
                                                  static_cast<int>(concat_axis),
                                                  mkldnn_engine, dt));
      concat_p = std::make_shared<concat>(
          prim_creator.CreateConcatPrimitive(*concat_pd, output, place));
      srcs = std::make_shared<std::vector<memory>>(prim_creator.GetSrcs());
      dst_mem = std::make_shared<memory>(prim_creator.GetDst());
      dev_ctx.SetBlob(key_prim, concat_p);
      dev_ctx.SetBlob(key_concat_pd, concat_pd);
      dev_ctx.SetBlob(key_srcs, srcs);
      dev_ctx.SetBlob(key_dst, dst_mem);
    } else {
      srcs = std::static_pointer_cast<std::vector<memory>>(
          dev_ctx.GetBlob(key_srcs));
      dst_mem = std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_dst));
      concat_pd = std::static_pointer_cast<concat::primitive_desc>(
          dev_ctx.GetBlob(key_concat_pd));
      for (size_t i = 0; i < multi_input.size(); i++) {
        prim_creator.SetSrcDataHandleByIndex(
            *srcs, i, to_void_cast<T>(multi_input[i]->data<T>()));
      }
      prim_creator.SetDstDataHandle(*dst_mem, output->mutable_data<T>(place));
    }

    stream(stream::kind::eager).submit({*concat_p}).wait();
M
Michal Gallus 已提交
221

222 223
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetDstMemFormat(*concat_pd));
M
Michal Gallus 已提交
224 225 226 227 228 229 230 231
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(concat, MKLDNN, ::paddle::platform::CPUPlace,
232 233 234
                   ops::ConcatMKLDNNOpKernel<float>,
                   ops::ConcatMKLDNNOpKernel<int8_t>,
                   ops::ConcatMKLDNNOpKernel<uint8_t>);