grad_node_info.cc 15.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/grad_node_info.h"
16
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
17
#include "paddle/fluid/eager/autograd_meta.h"
18 19
#include "paddle/fluid/eager/utils.h"

20 21
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
22
#include "paddle/phi/core/sparse_coo_tensor.h"
23

24 25 26
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/data_type_transform.h"
27
#include "paddle/fluid/framework/var_type.h"
28

29 30 31 32 33 34
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"

#include "glog/logging.h"

/**
35
 * Implementation of GradNodeBase, Edge and GradTensorHolder.
36 37 38 39
**/
namespace egr {

GradNodeBase::GradNodeBase(size_t bwd_in_slot_num, size_t bwd_out_slot_num) {
J
Jiabin Yang 已提交
40
  VLOG(6) << "Construct GradNodeBase";
41 42 43 44
  bwd_in_meta_.resize(bwd_in_slot_num);
  bwd_out_meta_.resize(bwd_out_slot_num);
}

45 46 47
const paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
GradNodeBase::InputMeta() const {
  return bwd_in_meta_;
48 49
}

50 51 52
const paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
GradNodeBase::OutputMeta() const {
  return bwd_out_meta_;
53 54
}

55 56
paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
GradNodeBase::MutableOutputMeta() {
57 58 59
  return bwd_out_meta_;
}

60
void GradNodeBase::SetGradInMeta(const paddle::experimental::Tensor& fwd_out,
61
                                 size_t slot_rank) {
62
  VLOG(6) << "Set GradSlotMeta for Grad Inputs";
63
  auto* fwd_out_meta = egr::EagerUtils::nullable_autograd_meta(fwd_out);
64 65 66 67 68 69
  PADDLE_ENFORCE_LE(
      slot_rank, (bwd_in_meta_.size() - 1),
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_in_meta_ size, since "
          "bwd_in_meta_ is designed to hold as same num as backward "
          "inputs."));
70 71 72 73 74 75
  auto& metas = bwd_in_meta_.at(slot_rank);
  if (metas.size() == 0) {
    metas.resize(1);
  }

  auto& meta = metas[0];
76 77 78
  if (fwd_out_meta && fwd_out_meta->StopGradient()) {
    meta.SetStopGradient(fwd_out_meta->StopGradient());
  }
79

80
  if (!fwd_out.initialized()) {
81 82 83 84 85
    VLOG(6)
        << "Skip Configuring GradSlotMeta for uninitialized GradInput Tensor";
    return;
  }

86
  phi::DenseTensor* dense_tensor = nullptr;
87 88 89
  // Record TensorMeta
  if (phi::DenseTensor::classof(fwd_out.impl().get())) {
    // Only Copy Meta
90 91 92 93 94
    dense_tensor = static_cast<phi::DenseTensor*>(fwd_out.impl().get());
  } else if (phi::SparseCooTensor::classof(fwd_out.impl().get())) {
    phi::SparseCooTensor* coo_tensor =
        static_cast<phi::SparseCooTensor*>(fwd_out.impl().get());
    dense_tensor = coo_tensor->mutable_non_zero_elements();
95 96 97
  } else {
    VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
               "non-DenseTensor argument.";
98
  }
99 100 101 102 103 104 105
  PADDLE_ENFORCE_NE(
      dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
      paddle::platform::errors::Fatal(
          "Attempting to copy DenseTensorMeta with phi::DataType::UNDEFINED,"
          "which is illegal."));

  meta.SetTensorMeta(dense_tensor->meta());
C
Chen Weihang 已提交
106
  meta.SetPlace(fwd_out.place());
107

108 109
  if (dense_tensor->type() == paddle::experimental::DataType::COMPLEX64 ||
      dense_tensor->type() == paddle::experimental::DataType::COMPLEX128) {
110 111
    need_complex_to_real_ = true;
  }
112 113
}

114 115 116
void GradNodeBase::SetGradInMeta(
    const std::vector<paddle::experimental::Tensor>& fwd_out,
    size_t slot_rank) {
117
  VLOG(6) << "Set GradSlotMeta for Grad Inputs";
118
  size_t slot_size = fwd_out.size();
119 120 121 122 123 124
  PADDLE_ENFORCE_LE(
      slot_rank, (bwd_in_meta_.size() - 1),
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_in_meta_ size, since "
          "bwd_in_meta_ is designed to hold as same num as backward "
          "inputs."));
125
  auto& metas = bwd_in_meta_.at(slot_rank);
126
  // Init stop gradient vector before use to avoid push back
127 128 129 130 131 132 133 134 135 136 137 138 139 140
  if (metas.size() < slot_size) {
    VLOG(7) << "Init bwd_in_meta_ with slot rank: " << slot_rank;
    metas.resize(slot_size);
  }
  for (size_t i = 0; i < slot_size; i++) {
    auto& meta = metas[i];
    const auto& fwd_out_tensor = fwd_out[i];
    auto* fwd_out_meta =
        egr::EagerUtils::nullable_autograd_meta(fwd_out_tensor);
    PADDLE_ENFORCE_NOT_NULL(fwd_out_meta,
                            paddle::platform::errors::PreconditionNotMet(
                                "Bwd_in_meta should only be called while "
                                "autograd_meta is not null. If you got this "
                                "error, it indicates bugs in framework."));
141
    if (fwd_out_meta && fwd_out_meta->StopGradient()) {
142 143 144 145 146
      // Set Stop Gradient only when its true or non-initialized autograd_meta,
      // since all default value is false.
      meta.SetStopGradient(fwd_out_meta->StopGradient());
    }

147
    if (!fwd_out_tensor.initialized()) {
148 149 150 151 152
      VLOG(6)
          << "Skip Configuring GradSlotMeta for uninitialized GradInput Tensor";
      return;
    }

153 154 155 156 157 158 159 160 161 162 163 164
    // Record TensorMeta
    if (phi::DenseTensor::classof(fwd_out_tensor.impl().get())) {
      // Only Copy Meta
      phi::DenseTensor* dense_tensor =
          static_cast<phi::DenseTensor*>(fwd_out_tensor.impl().get());

      PADDLE_ENFORCE_NE(
          dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
          paddle::platform::errors::Fatal("Attempting to copy DenseTensorMeta "
                                          "with phi::DataType::UNDEFINED,"
                                          "which is illegal."));
      meta.SetTensorMeta(dense_tensor->meta());
C
Chen Weihang 已提交
165
      meta.SetPlace(fwd_out_tensor.place());
166

167 168
      if (dense_tensor->type() == paddle::experimental::DataType::COMPLEX64 ||
          dense_tensor->type() == paddle::experimental::DataType::COMPLEX128) {
169 170 171 172 173 174 175
        need_complex_to_real_ = true;
      }
    } else {
      VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta "
                 "with non-DenseTensor argument.";
    }
  }
176 177
}

178
void GradNodeBase::SetGradOutMeta(const paddle::experimental::Tensor& fwd_in,
179
                                  size_t slot_rank) {
180
  auto* fwd_in_meta = egr::EagerUtils::nullable_autograd_meta(fwd_in);
181
  PADDLE_ENFORCE_LE(
182
      (slot_rank + 1), bwd_out_meta_.size(),
183 184 185 186
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_out_meta_ size, "
          "since bwd_out_meta_ is designed to hold as same num as "
          "backward outputs."));
187
  auto& metas = bwd_out_meta_.at(slot_rank);
188
  // Init stop gradient vector before use to avoid push back
189 190 191 192
  if (metas.size() == 0) {
    metas.resize(1);
  }
  auto& meta = metas[0];
193
  // Set Stop_gradient
194 195 196
  if (fwd_in_meta) {
    meta.SetStopGradient(fwd_in_meta->StopGradient());
  }
197 198 199 200 201 202 203 204 205 206 207
  // Set Adj Edges
  if (fwd_in_meta && !fwd_in_meta->StopGradient()) {
    auto node = fwd_in_meta->GetMutableGradNode();
    if (!node || !node.get()) {
      fwd_in_meta->SetGradNode(
          std::make_shared<egr::GradNodeAccumulation>(fwd_in_meta));
    }
    VLOG(6) << "Add Edges for slot: " << slot_rank << ", the Edge is from "
            << this->name() << " (addr: " << this << ") "
            << " to " << fwd_in_meta->GetMutableGradNode()->name()
            << " (addr: " << fwd_in_meta->GetMutableGradNode().get() << ")";
208

209 210
    meta.SetEdge(fwd_in_meta->GetMutableGradNode(), fwd_in_meta->OutRankInfo());
  }
211 212 213 214 215 216 217 218 219 220 221 222
  // Record TensorMeta
  if (fwd_in.impl() && fwd_in.impl().get()) {
    if (phi::DenseTensor::classof(fwd_in.impl().get())) {
      // Only Copy Meta
      phi::DenseTensor* dense_tensor =
          static_cast<phi::DenseTensor*>(fwd_in.impl().get());
      PADDLE_ENFORCE_NE(
          dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
          paddle::platform::errors::Fatal("Attempting to copy DenseTensorMeta "
                                          "with phi::DataType::UNDEFINED,"
                                          "which is illegal."));
      meta.SetTensorMeta(dense_tensor->meta());
C
Chen Weihang 已提交
223
      meta.SetPlace(fwd_in.place());
224
    }
225 226 227
  } else {
    VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
               "non-DenseTensor argument.";
228 229 230
  }
}

231 232 233
void GradNodeBase::SetGradOutMeta(
    const std::vector<paddle::experimental::Tensor>& fwd_in, size_t slot_rank) {
  size_t slot_size = fwd_in.size();
234
  PADDLE_ENFORCE_LE(
235
      slot_rank, (bwd_out_meta_.size() - 1),
236 237 238 239
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_out_meta_ size, "
          "since bwd_out_meta_ is designed to hold as same num as "
          "backward outputs."));
240
  auto& metas = bwd_out_meta_.at(slot_rank);
241
  // Init stop gradient vector before use to avoid push back
242 243 244 245 246 247 248
  if (metas.size() < slot_size) {
    metas.resize(slot_size);
  }
  for (size_t i = 0; i < slot_size; i++) {
    const auto& fwd_in_tensor = fwd_in[i];
    auto& meta = metas[i];
    auto* fwd_in_meta = egr::EagerUtils::nullable_autograd_meta(fwd_in_tensor);
249
    // Set Stop_gradient
250 251 252
    if (fwd_in_meta) {
      meta.SetStopGradient(fwd_in_meta->StopGradient());
    }
253 254 255 256 257 258 259 260 261 262 263
    // Set Adj Edges
    if (fwd_in_meta && !fwd_in_meta->StopGradient()) {
      auto node = fwd_in_meta->GetMutableGradNode();
      if (!node || !node.get()) {
        fwd_in_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(fwd_in_meta));
      }
      VLOG(6) << "Add Edges for slot: " << slot_rank << ", the Edge is from "
              << this->name() << " (addr: " << this << ") "
              << " to " << fwd_in_meta->GetMutableGradNode()->name()
              << " (addr: " << fwd_in_meta->GetMutableGradNode().get() << ")";
264

265 266 267
      meta.SetEdge(fwd_in_meta->GetMutableGradNode(),
                   fwd_in_meta->OutRankInfo());
    }
268 269 270 271 272 273 274 275
    // Record TensorMeta
    if (fwd_in_tensor.impl() && fwd_in_tensor.impl().get()) {
      if (phi::DenseTensor::classof(fwd_in_tensor.impl().get())) {
        // Only Copy Meta
        phi::DenseTensor* dense_tensor =
            static_cast<phi::DenseTensor*>(fwd_in_tensor.impl().get());
        PADDLE_ENFORCE_NE(dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
                          paddle::platform::errors::Fatal(
276 277
                              "Attempting to copy DenseTensorMeta "
                              "with phi::DataType::UNDEFINED,"
278 279
                              "which is illegal."));
        meta.SetTensorMeta(dense_tensor->meta());
C
Chen Weihang 已提交
280
        meta.SetPlace(fwd_in_tensor.place());
281 282
      }
    } else {
283 284 285
      VLOG(6)
          << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
             "non-DenseTensor argument.";
286
    }
287
  }
288 289 290 291 292 293 294 295 296
}

void GradNodeBase::SetDefaultGradInOutMeta() {
  PADDLE_ENFORCE((bwd_out_meta_.size() == 1) && (bwd_in_meta_.size() == 1),
                 paddle::platform::errors::PreconditionNotMet(
                     "We can only support 1 input and 1 output in default grad "
                     "meta setter, other size of inputs and outputs should "
                     "create with Setter and Getters"));
  // Default stop_gradient is false and slot id is 0, slot size is 1;
297 298
  bwd_out_meta_[0].resize(1);
  bwd_in_meta_[0].resize(1);
299 300
}

301 302 303 304 305
int64_t GradNodeBase::RegisterGradientHook(
    size_t slot_id, size_t rank, std::shared_ptr<egr::TensorHook>&& hook) {
  gradient_hooks_.emplace(next_hook_id_,
                          std::make_tuple(slot_id, rank, std::move(hook)));
  return next_hook_id_++;
306 307
}

308 309
paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                     kSlotSmallVectorSize>
310
GradNodeBase::ApplyGradientHooks(
311 312 313 314 315
    const paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                               kSlotSmallVectorSize>& tensors) {
  paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                       kSlotSmallVectorSize>
      outs(tensors.size());
316 317 318 319 320
  for (auto& hook_pair : gradient_hooks_) {
    size_t slot_id = std::get<0>(hook_pair.second);
    size_t rank = std::get<1>(hook_pair.second);

    auto hook = std::get<2>(hook_pair.second);
321 322 323 324 325 326 327 328 329 330 331 332

    PADDLE_ENFORCE(slot_id < tensors.size(),
                   paddle::platform::errors::Fatal(
                       "Slot_id from registered hook should be smaller than "
                       "slot size of grad_tensors"));

    PADDLE_ENFORCE(rank < tensors[slot_id].size(),
                   paddle::platform::errors::Fatal(
                       "rank of slot %d from registered hook should be smaller "
                       "than rank size of grad_tensors",
                       slot_id));

333
    std::vector<paddle::experimental::Tensor>& slot_out = outs[slot_id];
334
    slot_out.resize(tensors[slot_id].size());
335
    paddle::experimental::Tensor& out = slot_out[rank];
336
    if (!out.defined() || !out.initialized()) {
337
      out = (*hook)(tensors[slot_id][rank]);
338
    } else {
339
      // If more than one hook is registered, the input to the next hook func
340
      // should be the output of the previous hook
341
      out = (*hook)(out);
342 343 344 345 346 347 348 349 350 351 352 353
    }
  }

  for (size_t i = 0; i < outs.size(); i++) {
    if (outs[i].empty() && (!tensors[i].empty())) {
      outs[i].resize(tensors[i].size());
    }
    // TODO(Jiabin): Optimize this if we only add hook slot by slot
    for (size_t j = 0; j < outs[i].size(); j++) {
      if (!outs[i][j].defined() || !outs[i][j].initialized()) {
        outs[i][j] = tensors[i][j];
      }
354
      CheckTensor(tensors[i][j], outs[i][j]);
355 356 357 358 359 360
    }
  }

  return outs;
}

361
void GradNodeBase::HandleComplexGradToRealGrad(
362 363
    paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                         kSlotSmallVectorSize>* out_grads) {
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
  for (size_t slot_id = 0; slot_id < out_grads->size(); slot_id++) {
    const std::vector<paddle::experimental::Tensor>& slot_out_grads =
        (*out_grads)[slot_id];
    for (size_t rank_id = 0; rank_id < slot_out_grads.size(); rank_id++) {
      const GradSlotMeta& slot_meta = bwd_out_meta_[slot_id][rank_id];

      PADDLE_ENFORCE(
          slot_meta.HasTensorMeta() > 0,
          paddle::platform::errors::Fatal(
              "We require TensorMeta in GradInputMeta() to obtain forward data "
              "types."
              "However, no TensorMeta is detected in bwd_out_meta_."));

      auto fwd_data_type = paddle::framework::TransToProtoVarType(
          slot_meta.GetTensorMeta().dtype);
      const paddle::experimental::Tensor& grad = slot_out_grads[rank_id];

      if (paddle::framework::IsComplexType(fwd_data_type)) continue;

      // Only Handle Complex To Real for DenseTensor for now
      if (phi::DenseTensor::classof(grad.impl().get())) {
        phi::DenseTensor* grad_dense_tensor =
            static_cast<phi::DenseTensor*>(grad.impl().get());

        auto curr_data_type =
            paddle::framework::TransToProtoVarType(grad_dense_tensor->type());
        if (!paddle::framework::IsComplexType(curr_data_type)) continue;

        // Convert Complex GradOut to Real
        auto out = std::make_shared<phi::DenseTensor>();
        paddle::framework::TransComplexToReal(fwd_data_type, curr_data_type,
                                              *grad_dense_tensor, out.get());

        (*out_grads)[slot_id][rank_id].set_impl(out);
      }
    }
  }
}

403
}  // namespace egr