compiler.py 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import multiprocessing
import os
import six
X
polish  
Xin Pan 已提交
18
import sys
19 20 21
from .. import compat as cpt

from . import core
22
from . import framework
23

X
Xin Pan 已提交
24 25
__all__ = ['CompiledProgram', 'ExecutionStrategy', 'BuildStrategy']

26 27
ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
BuildStrategy = core.ParallelExecutor.BuildStrategy
F
flame 已提交
28 29
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
30 31 32 33 34 35 36 37


def _place_obj(place):
    p = core.Place()
    p.set_place(place)
    return p


X
polish  
Xin Pan 已提交
38
class CompiledProgram(object):
X
polish  
Xin Pan 已提交
39 40 41
    """
    Compiles a Program for execution.

X
Xin Pan 已提交
42 43 44 45
    1. Users first create the program with layers.
    2. Optionally, users use CompiledProgram to optimize the program before run.
    3. The original program or CompiledProgram is run by executor.

X
polish  
Xin Pan 已提交
46 47 48 49 50 51 52 53
    The CompiledProgram is used to transform a program for various
    optimizations, for example.
      * Pre-compute some logic once so that each run is faster.
      * Transform the program so that it can run in multiple devices.
      * TODO: transform the program for optimized inference or distributed
              training.

    Example:
X
Xin Pan 已提交
54 55 56 57 58 59 60 61 62 63
        .. code-block:: python
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup)
            compiled_prog = compiler.CompiledProgram(main).with_data_parallel(
                loss_name=loss.name)
            for i in range(5):
                test_loss, = exe.run(compiled_prog,
                                     feed=feed_dict,
                                     fetch_list=[loss.name])
X
polish  
Xin Pan 已提交
64 65 66 67 68

    Args:
        program: Program instance that contains the model logic.
    """

69 70
    def __init__(self, program):
        self._program = program
X
polish  
Xin Pan 已提交
71 72 73
        self._scope = None
        self._place = None
        self._executor = None
74 75
        self._compiled = False
        self._is_data_parallel = False
F
flame 已提交
76
        self._is_inference = False
77

X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    def with_data_parallel(self,
                           loss_name=None,
                           build_strategy=None,
                           exec_strategy=None,
                           share_vars_from=None):
        """Configs the program to run in data parallel way.

        Args:
            loss_name (str): The loss name must set in training. Default None.
            build_strategy(BuildStrategy): build_strategy is used to
                build the graph so it can run on multiple devices/cores with
                optimized topology.
                For more information, please refer to fluid.BuildStrategy.
                Default None.
            exec_strategy(ExecutionStrategy): exec_strategy is used to
                to select the a way to execute the graph, for example how many
                threads are used, how many iterations to clean up the temp
                variables. For more information, please refer
                to fluid.ExecutionStrategy. Default None.
            share_vars_from(CompiledProgram): If provide, this CompiledProgram
                will share variables from `share_vars_from`. `share_vars_from`
                must be run by the executor before this CompiledProgram so that
                vars are ready.
        Returns:
            self
        """
104 105 106 107 108
        assert not self._is_data_parallel, "Already compiled with parallel."
        self._is_data_parallel = True
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy
        self._loss_name = loss_name
X
polish  
Xin Pan 已提交
109
        self._share_vars_from = share_vars_from
X
fix  
Xin Pan 已提交
110 111 112 113
        if self._exec_strategy is None:
            self._exec_strategy = ExecutionStrategy()
        if self._build_strategy is None:
            self._build_strategy = BuildStrategy()
Q
Qiao Longfei 已提交
114 115
        self._build_strategy.is_distribution = framework.is_pserver_mode(
            self._program)
116 117
        return self

F
flame 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    def with_inference_optimize(self, config):
        """ Add inference optimize

        Args:
            config: instance of `NativeConfig` or `AnalysisConfig` to create predictor
        Returns:
            self
        """
        assert any([
            isinstance(config, InferNativeConfig),
            isinstance(config, InferAnalysisConfig)
        ])
        self._is_data_parallel = False
        self._is_inference = True
        self._infer_config = config
        return self
X
polish  
Xin Pan 已提交
134

F
flame 已提交
135
    def _with_distributed(self):
X
polish  
Xin Pan 已提交
136 137
        raise NotImplementedError()

138
    def _compile_data_parallel(self):
X
polish  
Xin Pan 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151
        if self._share_vars_from:
            if self._scope:
                sys.stderr.write("share_vars_from is set, scope is ignored.\n")
            if not self._share_vars_from._is_data_parallel:
                raise ValueError("share_vars_from is not data parallel. Cannot "
                                 "share vars from it.")
            if self._share_vars_from._executor is None:
                raise ValueError(
                    "share_vars_from is not compiled and run, so there is no "
                    "var to share.")
            self._local_scopes = self._share_vars_from._executor.local_scopes()
        else:
            self._local_scopes = []
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

        self._exec_strategy.use_cuda = isinstance(self._place, core.CUDAPlace)
        if self._exec_strategy.use_cuda:
            gpus_env = os.getenv("FLAGS_selected_gpus")
            if gpus_env:
                gpus = [int(s) for s in gpus_env.split(",")]
            else:
                gpus = [
                    i for i in six.moves.range(core.get_cuda_device_count())
                ]
            self._places = [core.CUDAPlace(i) for i in gpus]
        else:
            cpu_num = int(
                os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
            self._places = [core.CPUPlace() for _ in six.moves.range(cpu_num)]
        assert self._places, "no place for execution"

        if self._exec_strategy.num_threads == 0:
            if self._exec_strategy.use_cuda:
                # Experiments on se-resnext shows that too many threads hurt
                # performance. Worth tunning for other models in the future.
                self._exec_strategy.num_threads = len(self._places) * 4
            else:
                cpu_num = int(
                    os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
                self._exec_strategy.num_threads = cpu_num * 2

        trainers_endpoints = self._program._trainers_endpoints
D
dzhwinter 已提交
180 181 182 183 184

        # FIXME(dzhwinter): enable_inplace should be after memory_optimize
        # if turn on python memory optimize, turn off the inplace_pass.
        self._build_strategy.enable_inplace = False if self._program._is_mem_optimized else True

185 186 187 188 189 190
        if self._build_strategy.num_trainers > 1 and trainers_endpoints:
            assert self._build_strategy.num_trainers == len(
                trainers_endpoints), "num_trainers == len(end_points)"
            self._build_strategy.trainers_endpoints = trainers_endpoints

        self._persistable_vars = set([
Q
Qiao Longfei 已提交
191 192
            cpt.to_text(v.name)
            for v in [
193 194 195 196 197 198 199 200 201 202 203 204
                var for var in self._program.list_vars()
                if var.persistable and var.type != core.VarDesc.VarType.RAW
            ]
        ])

        places = list(map(_place_obj, self._places))
        return core.ParallelExecutor(
            places, self._persistable_vars, self._program.desc,
            cpt.to_text(self._loss_name)
            if self._loss_name else six.u(''), self._scope, self._local_scopes,
            self._exec_strategy, self._build_strategy)

F
flame 已提交
205 206 207 208
    def _compile_inference(self):
        assert self._is_data_parallel is False
        return core.create_paddle_predictor(self._infer_config)

209
    def _compile(self, scope, place):
X
Xin Pan 已提交
210 211 212 213 214 215 216 217 218 219
        """Compile the program based on the configs.

        Args:
            scope: The variables (resources) that are associated with
               this compiled program.
            place: The location that the compiled program will be run on.

        Returns:
            self
        """
220
        if self._compiled:
X
polish  
Xin Pan 已提交
221 222 223 224
            if scope and self._scope != scope:
                raise ValueError("Cannot compile with different scope")
            if place and self._place != place:
                raise ValueError("Cannot compile with different place")
225
            return self
X
fix  
Xin Pan 已提交
226
        self._compiled = True
227 228 229 230 231

        self._scope = scope
        self._place = place
        if self._is_data_parallel:
            self._executor = self._compile_data_parallel()
F
flame 已提交
232 233
        elif self._is_inference:
            self._executor = self._compile_inference()
234 235 236 237
        else:
            p = _place_obj(self._place)
            self._executor = core.Executor(p)
        return self