lookup_table_op.h 7.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17 18 19
#include <string>
#include <vector>

Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
M
minqiyang 已提交
24
#include "paddle/fluid/operators/math/blas.h"
25

Q
Qiao Longfei 已提交
26 27
#ifdef PADDLE_WITH_DISTRIBUTE

Q
Qiao Longfei 已提交
28 29
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"

Q
Qiao Longfei 已提交
30 31
#endif

32 33 34
namespace paddle {
namespace operators {

C
chengduoZH 已提交
35
using Tensor = framework::Tensor;
F
fengjiayi 已提交
36
using LoDTensor = framework::LoDTensor;
37
using SelectedRows = framework::SelectedRows;
38 39
using DDim = framework::DDim;

Q
qiaolongfei 已提交
40
constexpr int64_t kNoPadding = -1;
41 42

template <typename T>
Y
Yu Yang 已提交
43
class LookupTableKernel : public framework::OpKernel<T> {
44
 public:
45
  void Compute(const framework::ExecutionContext &context) const override {
46 47
    auto *ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto *output_t = context.Output<LoDTensor>("Out");  // float tensor
48
    auto *table_var = context.InputVar("W");
49

Q
Qiao Longfei 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    auto id_name = context.Inputs("Ids").front();
    auto out_name = context.Outputs("Out").front();
    auto table_name = context.Inputs("W").front();
    auto epmap = context.Attr<std::vector<std::string>>("epmap");
    auto height_sections =
        context.Attr<std::vector<int64_t>>("height_sections");

    if (!epmap.empty()) {
// if emap is not empty, then the paramter will be fetched from remote parameter
// server
#ifdef PADDLE_WITH_DISTRIBUTE
      operators::distributed::prefetch(id_name, out_name, table_name, epmap,
                                       height_sections, context);
#else
      PADDLE_THROW(
          "paddle is not compiled with distribute support, can not do "
          "parameter prefetch!");
#endif
    } else {
      int64_t padding_idx = context.Attr<int64_t>("padding_idx");
      int64_t *ids = const_cast<int64_t *>(ids_t->data<int64_t>());
      int64_t ids_numel = ids_t->numel();

      if (table_var->IsType<LoDTensor>()) {
        auto *table_t = context.Input<LoDTensor>("W");
        int64_t row_number = table_t->dims()[0];
        int64_t row_width = table_t->dims()[1];

        auto *table = table_t->data<T>();
        auto *output = output_t->mutable_data<T>(context.GetPlace());

        for (int64_t i = 0; i < ids_numel; ++i) {
          if (padding_idx != kNoPadding && ids[i] == padding_idx) {
            memset(output + i * row_width, 0, row_width * sizeof(T));
          } else {
            PADDLE_ENFORCE_LT(ids[i], row_number);
            PADDLE_ENFORCE_GE(ids[i], 0, "ids %d", i);
            memcpy(output + i * row_width, table + ids[i] * row_width,
                   row_width * sizeof(T));
          }
90
        }
Q
Qiao Longfei 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
      } else if (table_var->IsType<SelectedRows>()) {
        const auto &table_t = table_var->Get<SelectedRows>();
        int64_t row_width = table_t.value().dims()[1];
        const auto *table = table_t.value().data<T>();
        auto *output = output_t->mutable_data<T>(context.GetPlace());

        auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
        for (int64_t i = 0; i < ids_numel; ++i) {
          if (padding_idx != kNoPadding && ids[i] == padding_idx) {
            memset(output + i * row_width, 0, row_width * sizeof(T));
          } else {
            PADDLE_ENFORCE_GE(ids[i], 0);
            auto id_index = table_t.Index(ids[i]);
            PADDLE_ENFORCE_GE(id_index, 0, "the input key should be exists.");
            blas.VCOPY(row_width, table + id_index * row_width,
                       output + i * row_width);
          }
108 109
        }
      }
110 111 112 113 114
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
115
class LookupTableGradKernel : public framework::OpKernel<T> {
116
 public:
117
  void Compute(const framework::ExecutionContext &context) const override {
Q
qiaolongfei 已提交
118 119 120 121 122 123 124 125
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
Q
qiaolongfei 已提交
126 127 128
      PADDLE_THROW(
          "The parameter W of a LookupTable "
          "must be either LoDTensor or SelectedRows");
Q
qiaolongfei 已提交
129 130
    }

131
    bool is_sparse = context.Attr<bool>("is_sparse");
132 133
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
134
    if (is_sparse) {
135 136 137
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
138

139
      auto *ids_data = ids->data<int64_t>();
140
      int64_t ids_num = ids->numel();
141

M
minqiyang 已提交
142
      std::vector<int64_t> new_rows;
M
minqiyang 已提交
143 144
      new_rows.resize(ids_num);
      std::memcpy(&new_rows[0], ids_data, ids_num * sizeof(int64_t));
145
      d_table->set_rows(new_rows);
146

147
      auto *d_table_value = d_table->mutable_value();
148
      d_table_value->Resize({ids_num, table_dim[1]});
M
minqiyang 已提交
149
      // FIXME(minqiyang):
M
minqiyang 已提交
150 151
      // memory optimization will NOT reuse Tensor with SelectedRows
      // so we could just share the tensor here directly.
M
minqiyang 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
      // However, the InferVarType method will infer the output SelectedRows
      // to Tensor sometimes, which is a bug, so we will add an attribute
      // here to indicate the inplace and remove this attribute after
      // the InferVarType's bug was fixed
      bool grad_inplace = context.Attr<bool>("grad_inplace");
      if (grad_inplace) {
        d_table_value->ShareDataWith(*d_output);
      } else {
        d_table_value->mutable_data<T>(context.GetPlace());

        d_table->set_height(table_dim[0]);

        auto *d_output_data = d_output->data<T>();
        auto *d_table_data = d_table_value->data<T>();

        auto d_output_dims = d_output->dims();
        PADDLE_ENFORCE_EQ(
            d_table_value->dims(),
            framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1));
        memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
      }
173
    } else {
174 175 176
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
177

178
      auto *ids_data = ids->data<int64_t>();
179

Q
qiaolongfei 已提交
180
      int N = table_dim[0];
F
fengjiayi 已提交
181
      int D = table_dim[1];
182

183 184
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());
185

186 187
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

188 189 190 191
      for (int64_t i = 0; i < ids->numel(); ++i) {
        PADDLE_ENFORCE_LT(ids_data[i], N);
        PADDLE_ENFORCE_GE(ids_data[i], 0);
        for (int j = 0; j < D; ++j) {
192
          d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
193
        }
194 195 196 197 198 199 200
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle