elementwise_add_op.h 6.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

F
fengjiayi 已提交
15 16
#pragma once

17
#include "paddle/fluid/framework/eigen.h"
W
Wu Yi 已提交
18 19
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
20
#include "paddle/fluid/operators/math/blas.h"
G
gongweibao 已提交
21 22 23 24

namespace paddle {
namespace operators {

C
chengduoZH 已提交
25 26
template <typename T>
struct AddFunctor {
C
chengduoZH 已提交
27
  inline HOSTDEVICE T operator()(T a, T b) const { return a + b; }
C
chengduoZH 已提交
28 29
};

30
template <typename DeviceContext, typename T>
C
chengduo 已提交
31 32 33
void default_elementwise_add(const framework::ExecutionContext &ctx,
                             const framework::Tensor *x,
                             const framework::Tensor *y, framework::Tensor *z) {
34 35 36 37 38 39
  int axis = ctx.Attr<int>("axis");
  ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                        AddFunctor<T>(), z);
}

template <typename DeviceContext, typename T>
40 41 42
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
C
chengduo 已提交
43 44 45
elementwise_add(const framework::ExecutionContext &ctx,
                const framework::Tensor *x, const framework::Tensor *y,
                framework::Tensor *z) {
46 47 48 49 50 51 52 53 54
  auto eigen_x = framework::EigenVector<T>::Flatten(*x);
  auto eigen_y = framework::EigenVector<T>::Flatten(*y);
  auto eigen_z = framework::EigenVector<T>::Flatten(*z);

  auto blas = math::GetBlas<DeviceContext, T>(ctx);
  blas.VADD(x->numel(), eigen_x.data(), eigen_y.data(), eigen_z.data());
}

template <typename DeviceContext, typename T>
55 56 57
typename std::enable_if<
    !std::is_floating_point<T>::value ||
    !std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
C
chengduo 已提交
58 59 60
elementwise_add(const framework::ExecutionContext &ctx,
                const framework::Tensor *x, const framework::Tensor *y,
                framework::Tensor *z) {
61 62 63
  default_elementwise_add<DeviceContext, T>(ctx, x, y, z);
}

Q
QI JUN 已提交
64
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
65
class ElementwiseAddKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
66
 public:
C
chengduo 已提交
67 68 69 70
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *x = ctx.Input<framework::LoDTensor>("X");
    auto *y = ctx.Input<framework::LoDTensor>("Y");
    auto *z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
71 72

    z->mutable_data<T>(ctx.GetPlace());
73 74

    auto dims_equal = x->dims() == y->dims();
75
    if (dims_equal) {
76
      elementwise_add<DeviceContext, T>(ctx, x, y, z);
77
    } else {
78
      default_elementwise_add<DeviceContext, T>(ctx, x, y, z);
79
    }
G
gongweibao 已提交
80 81 82 83
  }
};

template <typename T>
Y
Yu Yang 已提交
84 85
struct IdentityGrad {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
86 87
};

88
template <typename DeviceContext, typename T>
C
chengduo 已提交
89 90 91 92 93 94 95
void default_elementwise_add_grad(const framework::ExecutionContext &ctx,
                                  const framework::Tensor *x,
                                  const framework::Tensor *y,
                                  const framework::Tensor *out,
                                  const framework::Tensor *dout,
                                  framework::Tensor *dx,
                                  framework::Tensor *dy) {
96 97
  int axis = ctx.Attr<int>("axis");

98 99 100 101
  ElemwiseExplicitGradCompute<DeviceContext, T, IdentityGrad<T>,
                              IdentityGrad<T>>(ctx, *x, *y, *out, *dout, axis,
                                               dx, dy, IdentityGrad<T>(),
                                               IdentityGrad<T>());
102 103
}

104
template <typename DeviceContext, typename T>
105 106 107
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
C
chengduo 已提交
108 109 110 111 112
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy) {
113 114 115 116 117 118 119 120 121 122 123 124 125
  auto blas = math::GetBlas<DeviceContext, T>(ctx);

  if (dx) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dx->mutable_data<T>(ctx.GetPlace()));
  }

  if (dy) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dy->mutable_data<T>(ctx.GetPlace()));
  }
}

126
template <typename DeviceContext, typename T>
127 128 129
typename std::enable_if<
    !std::is_floating_point<T>::value ||
    !std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
C
chengduo 已提交
130 131 132 133 134
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy) {
135 136 137
  default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
}

Q
QI JUN 已提交
138
template <typename DeviceContext, typename T>
139
class ElementwiseAddGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
140
 public:
C
chengduo 已提交
141
  void Compute(const framework::ExecutionContext &ctx) const override {
142 143
    ElemwiseGradKernel<T>::Compute(ctx);

C
chengduoZH 已提交
144 145
    using Tensor = framework::Tensor;

C
chengduo 已提交
146 147 148
    auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
T
tensor-tang 已提交
149
    // skip out, x, y
C
chengduo 已提交
150
    auto *out = dout;
T
tensor-tang 已提交
151
    auto *x = dout, *y = dout;
152

T
tensor-tang 已提交
153 154 155
    if (platform::is_cpu_place(ctx.GetPlace()) && dx != nullptr &&
        dy != nullptr && (dx->dims() == dy->dims())) {
      elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
156
    } else {
T
tensor-tang 已提交
157 158
      default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx,
                                                     dy);
159
    }
G
gongweibao 已提交
160 161 162 163 164
  }
};

}  // namespace operators
}  // namespace paddle