activation_op.h 48.0 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
11 12

#pragma once
D
dzhwinter 已提交
13
#include <glog/logging.h>
Y
Yihua Xu 已提交
14
#include <algorithm>
15
#include <memory>
D
dzhwinter 已提交
16 17
#include <string>
#include <unordered_set>
18 19
#include <utility>
#include <vector>
20

C
Clementine 已提交
21 22 23 24 25
#include <cmath>
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

Y
Yi Wang 已提交
26 27 28
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
Y
Yihua Xu 已提交
29
#include "paddle/fluid/operators/math/blas.h"
30
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
31

32 33 34 35
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Q
qijun 已提交
36 37 38
namespace paddle {
namespace operators {

39 40 41 42 43 44 45 46 47 48 49 50 51
enum ActBwdOpFwdDeps {
  kNoDeps = 0x00,  // Do not need any forward input/output
  kDepX = 0x01,    // Only need forward input X
  kDepOut = 0x02,  // Only need forward output Out

  // Never add kDepXOut, because Out can be always calculated
  // by forward input X in backward part.
  // FIXME(zjl): but in MKLDNN abs, X and Out are all needed...
  // Developers should not rely on this enum value!
  kDepXOut = 0x03
};

std::unique_ptr<std::unordered_set<std::string>> GetInplaceOpSet();
D
dzhwinter 已提交
52

53
static bool IsInplace(const std::string& op) {
54 55
  static auto InplaceOpSet = GetInplaceOpSet();
  bool inplace = InplaceOpSet->count(op);
56 57 58 59 60
  // for op_grad
  const int kGradSuffixLen = 4;
  if (op.size() > kGradSuffixLen &&
      op.compare(op.size() - kGradSuffixLen - 1, kGradSuffixLen, "grad")) {
    inplace =
61
        InplaceOpSet->count(op.substr(0, op.size() - (kGradSuffixLen + 1)));
62 63 64 65
  }
  return inplace;
}

C
chengduo 已提交
66 67 68 69 70 71
/* The following operator can be used to process SelectedRows, because the
 * output of those operator for zero is zero too.
 */
static std::unordered_set<std::string> CanBeUsedBySelectedRows = {
    "abs", "abs_grad", "square", "square_grad", "sqrt", "sqrt_grad"};

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
inline void ExtractActivationTensor(const framework::ExecutionContext& context,
                                    const framework::Tensor** X,
                                    framework::Tensor** Out) {
  auto x_var = context.InputVar("X");
  auto out_var = context.OutputVar("Out");
  PADDLE_ENFORCE(x_var != nullptr,
                 "Cannot get input Variable X, variable name = %s",
                 context.op().Input("X"));
  PADDLE_ENFORCE(out_var != nullptr,
                 "Cannot get output Variable Out, variable name = %s",
                 context.op().Output("Out"));
  if (CanBeUsedBySelectedRows.count(context.op().Type())) {
    *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
    *Out = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        out_var);
  } else {
    *X = context.Input<framework::Tensor>("X");
    *Out = context.Output<framework::Tensor>("Out");
  }

  PADDLE_ENFORCE(*Out != nullptr,
                 "Cannot get output tensor Out, variable name = %s",
                 context.op().Output("Out"));
}

97
template <ActBwdOpFwdDeps kDepValue>
98 99 100 101 102 103
inline void ExtractActivationGradTensor(
    const framework::ExecutionContext& context, const framework::Tensor** X,
    const framework::Tensor** Out, const framework::Tensor** dOut,
    framework::Tensor** dX) {
  auto out_grad_var = context.InputVar(framework::GradVarName("Out"));
  auto x_grad_var = context.OutputVar(framework::GradVarName("X"));
104 105 106 107 108 109 110 111
  const framework::Variable* out_var = nullptr;

  if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
    out_var = context.InputVar("Out");
    PADDLE_ENFORCE(out_var != nullptr,
                   "Cannot get input Variable Out, variable name = %s",
                   context.op().Input("Out"));
  }
112 113 114 115 116 117 118 119 120 121 122 123 124 125
  PADDLE_ENFORCE(out_grad_var != nullptr,
                 "Cannot get input Variable %s, variable name = %s",
                 framework::GradVarName("Out"),
                 context.op().Input(framework::GradVarName("Out")));
  PADDLE_ENFORCE(x_grad_var != nullptr,
                 "Cannot get output Variable %s, variable name = %s",
                 framework::GradVarName("X"),
                 context.op().Output(framework::GradVarName("X")));

  if (CanBeUsedBySelectedRows.count(context.op().Type())) {
    *dOut = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(
        *out_grad_var);
    *dX = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        x_grad_var);
126 127 128 129 130 131 132 133

    if (out_var) {
      *Out =
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*out_var);
    } else {
      *Out = *dOut;  // fake out
    }

134 135 136 137
  } else {
    *Out = context.Input<framework::Tensor>("Out");
    *dOut = context.Input<framework::Tensor>(framework::GradVarName("Out"));
    *dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
138 139 140 141 142 143

    if (out_var) {
      *Out = &(out_var->Get<framework::LoDTensor>());
    } else {
      *Out = *dOut;  // fake out
    }
144
  }
145

146 147 148 149 150
  PADDLE_ENFORCE(*dX != nullptr,
                 "Cannot get output tensor %s, variable name = %s",
                 framework::GradVarName("X"),
                 context.op().Output(framework::GradVarName("X")));

151
  if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
C
chengduo 已提交
152 153
    auto x_var = context.InputVar("X");
    PADDLE_ENFORCE(x_var != nullptr,
154
                   "Cannot get input tensor X, variable name = %s",
C
chengduo 已提交
155 156
                   context.op().Input("X"));
    if (CanBeUsedBySelectedRows.count(context.op().Type())) {
157
      *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
C
chengduo 已提交
158
    } else {
159
      *X = context.Input<framework::Tensor>("X");
C
chengduo 已提交
160
    }
161 162 163 164 165
  } else {
    VLOG(10) << " Inplace activation of Op : " << context.op().Type();
    *X = *dX;
  }
}
C
chengduo 已提交
166

167 168 169 170 171
template <typename DeviceContext, typename Functor>
class ActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
C
chengduo 已提交
172

173 174 175 176
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* X = nullptr;
    framework::Tensor* Out = nullptr;
    ExtractActivationTensor(context, &X, &Out);
C
chengduo 已提交
177
    Out->mutable_data<T>(context.GetPlace());
178 179 180

    auto x = framework::EigenVector<T>::Flatten(detail::Ref(X));
    auto out = framework::EigenVector<T>::Flatten(detail::Ref(Out));
Q
QI JUN 已提交
181 182
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
183
    Functor functor;
184 185 186 187 188

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
F
fengjiayi 已提交
189
    functor(*place, x, out);
Q
qijun 已提交
190 191 192
  }
};

Q
QI JUN 已提交
193
template <typename DeviceContext, typename Functor>
194 195
class ActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
196
 public:
197
  using T = typename Functor::ELEMENT_TYPE;
Q
qijun 已提交
198
  void Compute(const framework::ExecutionContext& context) const override {
199 200 201
    const framework::Tensor *X, *Out, *dOut;
    framework::Tensor* dX = nullptr;
    X = Out = dOut = nullptr;
202 203
    ExtractActivationGradTensor<Functor::FwdDeps()>(context, &X, &Out, &dOut,
                                                    &dX);
Q
qijun 已提交
204
    dX->mutable_data<T>(context.GetPlace());
205 206 207 208
    auto dout = framework::EigenVector<T>::Flatten(detail::Ref(dOut));
    auto out = framework::EigenVector<T>::Flatten(detail::Ref(Out));
    auto dx = framework::EigenVector<T>::Flatten(detail::Ref(dX));
    auto x = framework::EigenVector<T>::Flatten(detail::Ref(X));
Q
QI JUN 已提交
209 210
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
211
    Functor functor;
212 213 214 215
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
216
    functor(*place, x, out, dout, dx);
Q
qijun 已提交
217 218 219
  }
};

220 221 222 223 224 225 226
template <typename T>
struct BaseActivationFunctor {
  using ELEMENT_TYPE = T;

  using AttrPair = std::vector<std::pair<const char*, float*>>;

  AttrPair GetAttrs() { return AttrPair(); }
D
dzhwinter 已提交
227 228 229 230 231 232 233 234

  /* NOTE(*): Output reuse X memory if X is not dependented by its Gradient.
     For example, sigmoid op's gradient didn't involve x, so its output can
     reuse
     input memory. But abs op's gradient use x, it can not be inplaced.
     gradient did use x.
   */
  bool Inplace() const { return false; }
235 236
};

237
// sigmoid(x) = 1 / (1 + exp(-x))
Q
qijun 已提交
238
template <typename T>
239
struct SigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
240 241 242
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
Q
qijun 已提交
243 244 245
  }
};

246
template <typename T>
247
struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
248 249 250 251
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out * (static_cast<T>(1) - out);
Q
qijun 已提交
252
  }
253 254

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
255 256
};

257 258 259 260
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// We can rewrite the above equation as:
F
fengjiayi 已提交
261
// out = -log( exp(0) + exp(-x)) [since exp(0) = 1]
262 263 264 265 266 267 268 269 270 271
//   = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0)))
//   = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x -
//           max(-x, 0)))
//   = -log( exp(max(-x, 0)) * (exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
//   = -log( exp(max(-x, 0)) - log(exp(-max(-x, 0)) + exp(-x - max(-x, 0)))
//
// Hence, logsigmoid(x) = - (max(-x, 0) + log(exp(-max(-x, 0))
// + exp(-x - max(-x, 0))))
template <typename T>
struct LogSigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
272 273
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
274
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
F
fengjiayi 已提交
275
    out.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log());
276 277 278 279 280 281 282 283
  }
};

// Originally: f' = exp(-x) / (1 + exp(-x))
// For numerical stability: f' = exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) +
// exp(-x - max(-x, 0)))
template <typename T>
struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
284 285 286
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
287 288
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    dx.device(d) =
F
fengjiayi 已提交
289
        dout * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp()));
290
  }
291 292

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
293 294
};

Q
qijun 已提交
295
// exp(x) = e^x
296 297
template <typename T>
struct ExpFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
298 299 300
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.exp();
Q
qijun 已提交
301 302 303
  }
};

304 305
template <typename T>
struct ExpGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
306 307 308 309
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out;
Q
qijun 已提交
310
  }
311 312

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
313 314
};

Q
qijun 已提交
315
// relu(x) = max(x, 0)
Q
qijun 已提交
316
template <typename T>
317
struct ReluFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
318 319 320
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0));
Q
qijun 已提交
321 322
  }
};
Q
qijun 已提交
323

Q
qijun 已提交
324
template <typename T>
325
struct ReluGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
326 327 328
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
329
    dx.device(d) = dout * (out > static_cast<T>(0)).template cast<T>();
Q
qijun 已提交
330
  }
331 332

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
333
};
Q
qijun 已提交
334

C
Clementine 已提交
335 336 337 338 339
// gelu(x) = 0.5 * x *  (1 + erf(x / sqrt(2)))
template <typename T>
struct GeluFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yihua Xu 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
// Because the execute or device context can not be deliver here, it keep the
// marco for NVCC.
#if defined(PADDLE_WITH_MKLML) && !defined(_WIN32) && !defined(__APPLE__) && \
    !defined(__OSX__) && !defined(PADDLE_WITH_CUDA)
    auto x_data = x.data();
    auto out_data = out.data();
    int n = std::min(x.size(), out.size());

    std::memset(out_data, 0, n * sizeof(T));
    math::CBlas<T>::AXPY(n, static_cast<T>(M_SQRT1_2), x_data, 1, out_data, 1);
    math::CBlas<T>::VMERF(n, out_data, out_data, VML_LA);
    for (int i = 0; i < n; i++) {
      out_data[i] += static_cast<T>(1);
    }
    math::CBlas<T>::VMUL(n, x_data, out_data, out_data);
    for (int i = 0; i < n; i++) {
      out_data[i] *= static_cast<T>(0.5);
    }
#else
359
    auto temp = (x * static_cast<T>(M_SQRT1_2)).erf();
C
Clementine 已提交
360
    out.device(d) = x * static_cast<T>(0.5) * (static_cast<T>(1) + temp);
Y
Yihua Xu 已提交
361
#endif
C
Clementine 已提交
362 363 364 365 366 367 368 369
  }
};

template <typename T>
struct GeluGradFunctor : BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
370 371 372 373 374 375
    auto first = static_cast<T>(0.5) *
                 (static_cast<T>(1) + ((x * static_cast<T>(M_SQRT1_2)).erf()));

    auto second = static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2) * x *
                  (-static_cast<T>(0.5) * x.square()).exp();
    dx.device(d) = dout * (first + second);
C
Clementine 已提交
376
  }
377 378

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
C
Clementine 已提交
379 380
};

381
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
382 383
template <typename T>
struct TanhFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
384 385 386
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.tanh();
Q
qijun 已提交
387 388 389 390
  }
};

template <typename T>
391
struct TanhGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
392 393 394 395
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) - out * out);
Q
qijun 已提交
396
  }
397 398

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
399 400
};

K
Kavya Srinet 已提交
401 402 403 404
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct TanhShrinkFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
405 406 407
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x - x.tanh();
K
Kavya Srinet 已提交
408 409 410 411 412
  }
};

template <typename T>
struct TanhShrinkGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
413 414 415 416
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x.tanh() * x.tanh());
K
Kavya Srinet 已提交
417
  }
418 419

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
K
Kavya Srinet 已提交
420 421
};

422 423 424 425 426 427 428 429 430
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct HardShrinkFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
431 432
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
433 434
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
F
fengjiayi 已提交
435
    out.device(d) = x * (temp1 + temp2);
436 437 438 439 440 441 442 443 444 445 446
  }
};

template <typename T>
struct HardShrinkGradFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
447 448 449
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
450 451
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
F
fengjiayi 已提交
452
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
453
  }
454 455

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
456 457
};

K
Kexin Zhao 已提交
458
// softshrink(x) = x - lambda, if x > lambda; x + lambda, if x < -lambda; 0
459 460 461 462 463 464 465 466
// otherwise
template <typename T>
struct SoftShrinkFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }

F
fengjiayi 已提交
467 468
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
469 470 471
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
F
fengjiayi 已提交
472
    out.device(d) = temp1 * (x - lambdaT) + temp2 * (x + lambdaT);
473 474 475 476 477 478 479 480 481
  }
};

template <typename T>
struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }
F
fengjiayi 已提交
482 483 484
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
485 486 487
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
F
fengjiayi 已提交
488
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
489
  }
490 491

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
492 493
};

Q
qijun 已提交
494
// sqrt(x) = x^(1/2)
495 496
template <typename T>
struct SqrtFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
497 498 499
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.sqrt();
Q
qijun 已提交
500 501 502 503
  }
};

template <typename T>
504
struct SqrtGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
505 506 507
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
C
chengduo 已提交
508
    dx.device(d) = static_cast<T>(0.5) * dout / out;
Q
qijun 已提交
509
  }
510 511

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
512 513
};

Z
zhoukunsheng 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526 527
// rsqrt(x) = x^(-1/2)
template <typename T>
struct RsqrtFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.rsqrt();
  }
};

template <typename T>
struct RsqrtGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
528
    dx.device(d) = static_cast<T>(-0.5) * dout * out * out * out;
Z
zhoukunsheng 已提交
529
  }
Z
zhoukunsheng 已提交
530 531

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Z
zhoukunsheng 已提交
532 533
};

D
dzhwinter 已提交
534 535 536
// ceil(x) = ceiling(x)
template <typename T>
struct CeilFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
537 538 539
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.ceil();
D
dzhwinter 已提交
540 541 542 543 544
  }
};

template <typename T>
struct ZeroGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
545 546 547
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Z
Zeng Jinle 已提交
548
    dx.device(d) = static_cast<T>(0) * out;
D
dzhwinter 已提交
549
  }
550 551

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kNoDeps; }
D
dzhwinter 已提交
552 553 554 555 556
};

// floor(x) = flooring(x)
template <typename T>
struct FloorFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
557 558
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Q
Qiao Longfei 已提交
559
    out.device(d) = x.floor();
D
dzhwinter 已提交
560 561 562
  }
};

C
add cos  
chengduoZH 已提交
563 564 565 566 567
template <typename T>
struct Sine {
  HOSTDEVICE T operator()(const T& val) const { return sin(val); }
};

568 569 570 571 572 573 574
template <>
struct Sine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(sin(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
575 576 577 578 579
template <typename T>
struct Cosine {
  HOSTDEVICE T operator()(const T& val) const { return cos(val); }
};

580 581 582 583 584 585 586
template <>
struct Cosine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(cos(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
587 588 589 590 591 592 593 594
// cosine'(x) = -sin(x)
template <typename T>
struct CosGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = -dout * x.unaryExpr(Sine<T>());
  }
595 596

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
C
add cos  
chengduoZH 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
};

// cosine(x) = cos(x)
template <typename T>
struct CosFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Cosine<T>());
  }
};

// sine'(x) = cos(x)
template <typename T>
struct SinGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.unaryExpr(Cosine<T>());
  }
616 617

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
C
add cos  
chengduoZH 已提交
618 619 620 621 622 623 624 625 626 627 628
};

// sine(x) = sin(x)
template <typename T>
struct SinFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Sine<T>());
  }
};

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
template <typename T>
struct Acos {
  HOSTDEVICE T operator()(const T& val) const { return acos(val); }
};

template <>
struct Acos<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(acos(static_cast<float>(val)));
  }
};

// Acos(x) = acos(x)
template <typename T>
struct AcosFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Acos<T>());
  }
};

// acos'(x) = -1/sqrt(1-x^2)
template <typename T>
struct AcosGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) =
        -dout * static_cast<T>(1) / (static_cast<T>(1) - x.square()).sqrt();
  }
659 660

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
};

template <typename T>
struct Asin {
  HOSTDEVICE T operator()(const T& val) const { return asin(val); }
};

template <>
struct Asin<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(asin(static_cast<float>(val)));
  }
};

// Asin(x) = asin(x)
template <typename T>
struct AsinFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Asin<T>());
  }
};

// asin'(x) = 1/sqrt(1-x^2)
template <typename T>
struct AsinGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) =
        dout * static_cast<T>(1) / (static_cast<T>(1) - x.square()).sqrt();
  }
693 694

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
};

template <typename T>
struct Atan {
  HOSTDEVICE T operator()(const T& val) const { return atan(val); }
};

template <>
struct Atan<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(atan(static_cast<float>(val)));
  }
};

// Atan(x) = atan(x)
template <typename T>
struct AtanFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Atan<T>());
  }
};

// atan'(x) =  1 / (1 + x^2)
template <typename T>
struct AtanGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(1) / (static_cast<T>(1) + x.square());
  }
726 727

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
728 729
};

D
dzhwinter 已提交
730 731 732
// round(x) = [x]
template <typename T>
struct RoundFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
733 734 735
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.round();
D
dzhwinter 已提交
736 737 738
  }
};

Q
qijun 已提交
739
// abs(x) = |x|
740 741
template <typename T>
struct AbsFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
742 743 744
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.abs();
Q
qijun 已提交
745 746 747
  }
};

748 749
template <typename T>
struct AbsGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
750 751 752 753
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.sign();
754
  }
755 756

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepXOut; }
757 758
};

Q
qijun 已提交
759 760
// reciprocal(x) = 1 / x
template <typename T>
761
struct ReciprocalFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
762 763 764
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / x;
Q
qijun 已提交
765 766 767
  }
};

768
template <typename T>
769
struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
770 771 772 773
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(-1) * out * out;
Q
qijun 已提交
774
  }
775 776

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
Q
qijun 已提交
777 778 779
};

// log(x) = natural logarithm of x
780 781
template <typename T>
struct LogFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
782 783 784
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log();
Q
qijun 已提交
785 786 787
  }
};

788
template <typename T>
789
struct LogGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
790 791 792 793
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / x);
Q
qijun 已提交
794
  }
795 796

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
Q
qijun 已提交
797 798 799
};

// square(x) = x^2
800 801
template <typename T>
struct SquareFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
802 803 804
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.square();
Q
qijun 已提交
805
  }
806
};
Q
qijun 已提交
807

808
template <typename T>
809
struct SquareGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
810 811 812 813
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(2) * x;
814
  }
815 816

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
817 818
};

819 820 821 822 823 824 825 826 827 828
template <typename T>
struct BReluFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;

  // NOTE: Explicit hides the `BaseActivationFunctor<T>::GetAttrs`
  // not polymorphism for speed.
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
829

F
fengjiayi 已提交
830 831 832
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
833
        x.cwiseMax(static_cast<T>(t_min)).cwiseMin(static_cast<T>(t_max));
834 835 836
  }
};

837 838 839 840 841 842 843
template <typename T>
struct BReluGradFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
F
fengjiayi 已提交
844 845 846 847
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
Y
Yu Yang 已提交
848 849
                   ((x > static_cast<T>(t_min)) * (x < static_cast<T>(t_max)))
                       .template cast<T>();
850
  }
851 852

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
853 854
};

855 856 857 858 859 860 861 862 863
// relu6(x) = min(max(0, x), 6)
template <typename T>
struct Relu6Functor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
864 865 866
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
867
        x.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(threshold));
868 869 870 871 872 873 874 875 876
  }
};

template <typename T>
struct Relu6GradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
877 878 879
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
880 881 882 883
    dx.device(d) =
        dout *
        ((out > static_cast<T>(0)) * (out < static_cast<T>(threshold)))
            .template cast<T>();
884
  }
885 886

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
887 888
};

K
kexinzhao 已提交
889 890 891 892 893 894 895
// softplus(x) = log(1 + exp(x))
// When x is a very large positive number, exp(x) may explode to inf,
// Using trick below for numerical stability
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// Then: softplus(x) = max(x, 0) + log(exp(-max(x, 0)) + exp(x - max(x, 0)))
template <typename T>
struct SoftplusFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
896 897
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
K
kexinzhao 已提交
898
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
899
    out.device(d) = temp + (((-temp).exp() + (x - temp).exp()).log());
K
kexinzhao 已提交
900 901 902 903 904 905 906 907 908
  }
};

// d(softplus(x))/dx = exp(x) / (1 + exp(x))
// For numerical stability:
// d(softplus(x))/dx = exp(x - max(x, 0)) / (exp(-max(x, 0)) +
// exp(x - max(x, 0)))
template <typename T>
struct SoftplusGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
909 910 911
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
K
kexinzhao 已提交
912
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
913 914
    dx.device(d) =
        dout * ((x - temp).exp() / ((-temp).exp() + (x - temp).exp()));
K
kexinzhao 已提交
915
  }
916 917

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
K
kexinzhao 已提交
918 919
};

920 921
// softsign(x) = x / (1 + |x|)
template <typename T>
922
struct SoftsignFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
923 924 925
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
    out.device(d) = x / (static_cast<T>(1) + x.abs());
926 927 928 929 930 931
  }
};

// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function
template <typename T>
932
struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
933 934 935
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
936
    dx.device(d) =
F
fengjiayi 已提交
937
        dout * (static_cast<T>(1) / (static_cast<T>(1) + x.abs()).square());
938
  }
939 940

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
941 942
};

943 944 945 946 947 948
template <typename T>
struct SoftReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
949

F
fengjiayi 已提交
950 951
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
952 953
    auto tmp = static_cast<T>(threshold);
    auto temp = x.cwiseMax(-tmp).cwiseMin(tmp);
F
fengjiayi 已提交
954
    out.device(d) = (static_cast<T>(1) + temp.exp()).log();
955 956 957
  }
};

958 959 960 961 962 963
template <typename T>
struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
964 965 966
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
967
    auto tmp = static_cast<T>(threshold);
D
dzhwinter 已提交
968
    auto temp = ((out > -tmp) * (out < tmp)).template cast<T>().eval();
F
fengjiayi 已提交
969
    dx.device(d) = dout * (static_cast<T>(1) - (-out).exp()) * temp;
970
  }
971 972

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
973 974
};

K
Kavya Srinet 已提交
975 976 977 978 979 980
template <typename T>
struct LeakyReluFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
981

F
fengjiayi 已提交
982 983 984
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(alpha) * x);
985 986 987
  }
};

K
Kavya Srinet 已提交
988 989 990 991 992 993
template <typename T>
struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
994 995 996
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
997 998
    auto temp1 = static_cast<T>(alpha) *
                 (x < static_cast<T>(0)).template cast<T>().eval();
K
Kavya Srinet 已提交
999
    auto temp2 = (x >= static_cast<T>(0)).template cast<T>().eval();
F
fengjiayi 已提交
1000
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
1001
  }
1002 1003

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1004 1005
};

1006 1007 1008 1009 1010 1011
template <typename T>
struct ELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
1012

F
fengjiayi 已提交
1013 1014 1015 1016 1017
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0)) +
                    (static_cast<T>(alpha) * (x.exp() - static_cast<T>(1)))
                        .cwiseMin(static_cast<T>(0));
1018 1019 1020
  }
};

1021 1022 1023 1024 1025 1026
template <typename T>
struct ELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
1027 1028 1029 1030
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x > static_cast<T>(0)).template cast<T>() +
1031
                   dout * static_cast<T>(alpha) * x.exp() *
Y
Yu Yang 已提交
1032
                       (x < static_cast<T>(0)).template cast<T>();
1033
  }
1034 1035

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1036 1037
};

Q
QI JUN 已提交
1038
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
1039 1040 1041 1042 1043 1044
template <typename T>
struct PowFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
1045 1046 1047
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.pow(static_cast<T>(factor));
1048 1049 1050
  }
};

1051 1052 1053 1054 1055 1056
template <typename T>
struct PowGradFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
1057 1058 1059 1060
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(factor) *
C
chengduo 已提交
1061
                   x.pow(static_cast<T>(factor) - static_cast<T>(1));
1062
  }
1063 1064

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1065 1066
};

1067 1068 1069 1070 1071 1072 1073
template <typename T>
struct STanhFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
1074

F
fengjiayi 已提交
1075 1076 1077
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
1078
        static_cast<T>(scale_b) * (static_cast<T>(scale_a) * x).tanh();
1079 1080 1081
  }
};

1082 1083 1084 1085 1086 1087 1088
template <typename T>
struct STanhGradFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
1089

F
fengjiayi 已提交
1090 1091 1092
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1093 1094 1095
    auto a = static_cast<T>(scale_a);
    auto b = static_cast<T>(scale_b);
    auto temp = (a * x).tanh() * (a * x).tanh();
F
fengjiayi 已提交
1096
    dx.device(d) = dout * a * b * (static_cast<T>(1) - temp);
Q
qijun 已提交
1097
  }
1098 1099

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
Q
qijun 已提交
1100 1101
};

1102 1103 1104 1105 1106 1107 1108
template <typename T>
struct ThresholdedReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
1109 1110
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
1111
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
1112
    out.device(d) = (x > th).template cast<T>() * x;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
  }
};

template <typename T>
struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
1123 1124 1125
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1126
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
1127
    dx.device(d) = dout * (x > th).template cast<T>();
1128
  }
1129 1130

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
1131 1132
};

1133 1134 1135 1136 1137 1138 1139 1140
template <typename T>
struct HardSigmoidFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

F
fengjiayi 已提交
1141 1142
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
1143
    auto temp = x * static_cast<T>(slope) + static_cast<T>(offset);
F
fengjiayi 已提交
1144 1145
    out.device(d) =
        temp.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(1));
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
  }
};

template <typename T>
struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }
F
fengjiayi 已提交
1156 1157 1158 1159 1160 1161 1162
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
                   ((out > static_cast<T>(0)) * (out < static_cast<T>(1)))
                       .template cast<T>() *
                   static_cast<T>(slope);
1163
  }
1164 1165

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
1166 1167
};

A
Abhinav Arora 已提交
1168 1169 1170 1171 1172 1173 1174
template <typename T>
struct SwishFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
1175 1176 1177
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x / (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
A
Abhinav Arora 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
  }
};

template <typename T>
struct SwishGradFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
1188 1189
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
1190
  void operator()(Device d, X x, Out fake_out, dOut dout, dX dx) const {
A
Abhinav Arora 已提交
1191
    auto temp1 = static_cast<T>(1) /
1192
                 (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
1193
    auto out = x * temp1;
D
dzhwinter 已提交
1194 1195
    auto temp2 = temp1 * (static_cast<T>(1) - (static_cast<T>(beta) * out));
    dx.device(d) = dout * ((static_cast<T>(beta) * out) + temp2);
A
Abhinav Arora 已提交
1196
  }
1197 1198

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
A
Abhinav Arora 已提交
1199 1200
};

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
/*
 * in arguments: x, out, ddx
 * out arguments: ddout, dout, dx
 */
template <ActBwdOpFwdDeps kDepValue>
inline void ExtractActivationDoubleGradTensor(
    const framework::ExecutionContext& ctx, const framework::Tensor** X,
    const framework::Tensor** Out, const framework::Tensor** ddX,
    framework::Tensor** dX, framework::Tensor** dOut,
    framework::Tensor** ddOut) {
  auto ddx_var = ctx.InputVar("DDX");
  auto ddo_var = ctx.OutputVar("DDOut");
  PADDLE_ENFORCE(ddx_var != nullptr,
1214
                 "Cannot get input Variable Out, variable name = %s",
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
                 ctx.op().Input("DDX"));
  if (CanBeUsedBySelectedRows.count(ctx.op().Type())) {
    *ddX = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*ddx_var);
    if (ddo_var) {
      *ddOut = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
          ddo_var);
    }
  } else {
    *ddX = ctx.Input<framework::Tensor>("DDX");
    if (ddo_var) {
      *ddOut = ctx.Output<framework::Tensor>("DDOut");
    }
  }
  PADDLE_ENFORCE(*ddX != nullptr,
1229
                 "Cannot get output tensor DDX, variable name = %s",
1230 1231 1232 1233 1234
                 ctx.op().Output("DDX"));

  if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
    auto x_var = ctx.InputVar("X");
    PADDLE_ENFORCE(x_var != nullptr,
1235
                   "Cannot get input Variable Out, variable name = %s",
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
                   ctx.op().Input("X"));
    auto dx_var = ctx.OutputVar("DX");
    if (CanBeUsedBySelectedRows.count(ctx.op().Type())) {
      *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
      if (dx_var) {
        *dX = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
            dx_var);
      }
    } else {
      *X = ctx.Input<framework::Tensor>("X");
      if (dx_var) {
        *dX = ctx.Output<framework::Tensor>("DX");
      }
    }
  } else {
1251
    VLOG(10) << "Inplace activation of Op: " << ctx.op().Type();
1252 1253
    *X = *ddX;
  }
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
  if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
    auto out_var = ctx.InputVar("Out");
    PADDLE_ENFORCE(out_var != nullptr,
                   "Cannot get input tensor Out, variable name = %s",
                   ctx.op().Input("Out"));
    auto dout_var = ctx.OutputVar("DOut");
    if (CanBeUsedBySelectedRows.count(ctx.op().Type())) {
      *Out =
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*out_var);
      if (dout_var) {
        *dOut =
            paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
                dout_var);
      }
    } else {
      *Out = ctx.Input<framework::Tensor>("Out");
      if (dout_var) {
        *dOut = ctx.Output<framework::Tensor>("DOut");
      }
    }
  } else {
    VLOG(10) << "Inplace activation of Op: " << ctx.op().Type();
    *Out = *ddX;
  }
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
}

template <typename DeviceContext, typename Functor>
class ActivationDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *Out, *ddX;
    X = Out = ddX = nullptr;
    framework::Tensor *ddOut, *dOut, *dX;
    ddOut = dOut = dX = nullptr;

    ExtractActivationDoubleGradTensor<Functor::FwdDeps()>(ctx, &X, &Out, &ddX,
                                                          &dX, &dOut, &ddOut);

    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());
    if (dOut) dOut->mutable_data<T>(ctx.GetPlace());
    if (dX) dX->mutable_data<T>(Out->dims(), ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(place, X, Out, ddX, ddOut, dOut, dX);
  }
};

template <typename T>
struct ReluGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* Out, const framework::Tensor* ddX,
                  framework::Tensor* ddOut, framework::Tensor* dOut,
                  framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(detail::Ref(ddX));
    auto out = framework::EigenVector<T>::Flatten(detail::Ref(Out));
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(detail::Ref(ddOut));
      ddout.device(*d) = ddx * (out > static_cast<T>(0)).template cast<T>();
    }
    if (dOut) {
      auto dout = framework::EigenVector<T>::Flatten(detail::Ref(dOut));
      dout.device(*d) = dout.constant(static_cast<T>(0));
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
template <typename T>
struct LeakyReluGradGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* Out, const framework::Tensor* ddX,
                  framework::Tensor* ddOut, framework::Tensor* dOut,
                  framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(detail::Ref(ddX));
    auto x = framework::EigenVector<T>::Flatten(detail::Ref(X));
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(detail::Ref(ddOut));
      ddout.device(*d) = ddx *
                         ((x >= static_cast<T>(0)).template cast<T>().eval() +
                          static_cast<T>(alpha) *
                              (x < static_cast<T>(0)).template cast<T>().eval())
                             .template cast<T>();
    }
    if (dX) {
      auto dx = framework::EigenVector<T>::Flatten(detail::Ref(dX));
      dx.device(*d) = dx.constant(static_cast<T>(0));
    }
  }
  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepX; }
};

Q
qijun 已提交
1361 1362
}  // namespace operators
}  // namespace paddle
1363

1364 1365 1366 1367 1368 1369 1370 1371 1372
#define FOR_EACH_ACTIVATION_OP(__macro)                                       \
  __macro(sigmoid, Sigmoid, SigmoidFunctor, SigmoidGradFunctor);              \
  __macro(logsigmoid, LogSigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor);  \
  __macro(exp, Exp, ExpFunctor, ExpGradFunctor);                              \
  __macro(gelu, Gelu, GeluFunctor, GeluGradFunctor);                          \
  __macro(tanh, Tanh, TanhFunctor, TanhGradFunctor);                          \
  __macro(atan, Atan, AtanFunctor, AtanGradFunctor);                          \
  __macro(softshrink, SoftShrink, SoftShrinkFunctor, SoftShrinkGradFunctor);  \
  __macro(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor);                          \
Z
zhoukunsheng 已提交
1373
  __macro(rsqrt, Rsqrt, RsqrtFunctor, RsqrtGradFunctor);                      \
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
  __macro(abs, Abs, AbsFunctor, AbsGradFunctor);                              \
  __macro(ceil, Ceil, CeilFunctor, ZeroGradFunctor);                          \
  __macro(floor, Floor, FloorFunctor, ZeroGradFunctor);                       \
  __macro(cos, Cos, CosFunctor, CosGradFunctor);                              \
  __macro(acos, Acos, AcosFunctor, AcosGradFunctor);                          \
  __macro(sin, Sin, SinFunctor, SinGradFunctor);                              \
  __macro(asin, Asin, AsinFunctor, AsinGradFunctor);                          \
  __macro(round, Round, RoundFunctor, ZeroGradFunctor);                       \
  __macro(reciprocal, Reciprocal, ReciprocalFunctor, ReciprocalGradFunctor);  \
  __macro(log, Log, LogFunctor, LogGradFunctor);                              \
  __macro(square, Square, SquareFunctor, SquareGradFunctor);                  \
  __macro(brelu, BRelu, BReluFunctor, BReluGradFunctor);                      \
  __macro(soft_relu, SoftRelu, SoftReluFunctor, SoftReluGradFunctor);         \
  __macro(pow, Pow, PowFunctor, PowGradFunctor);                              \
  __macro(stanh, STanh, STanhFunctor, STanhGradFunctor);                      \
  __macro(softplus, Softplus, SoftplusFunctor, SoftplusGradFunctor);          \
  __macro(softsign, Softsign, SoftsignFunctor, SoftsignGradFunctor);          \
  __macro(relu6, Relu6, Relu6Functor, Relu6GradFunctor);                      \
  __macro(tanh_shrink, TanhShrink, TanhShrinkFunctor, TanhShrinkGradFunctor); \
  __macro(elu, ELU, ELUFunctor, ELUGradFunctor);                              \
  __macro(hard_shrink, HardShrink, HardShrinkFunctor, HardShrinkGradFunctor); \
  __macro(hard_sigmoid, HardSigmoid, HardSigmoidFunctor,                      \
          HardSigmoidGradFunctor);                                            \
  __macro(swish, Swish, SwishFunctor, SwishGradFunctor);                      \
  __macro(thresholded_relu, ThresholdedRelu, ThresholdedReluFunctor,          \
          ThresholdedReluGradFunctor);