activation_op.h 39.1 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
11 12

#pragma once
D
dzhwinter 已提交
13
#include <glog/logging.h>
Y
Yihua Xu 已提交
14
#include <algorithm>
D
dzhwinter 已提交
15 16
#include <string>
#include <unordered_set>
17 18
#include <utility>
#include <vector>
19

C
Clementine 已提交
20 21 22 23 24
#include <cmath>
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
Y
Yihua Xu 已提交
28
#include "paddle/fluid/operators/math/blas.h"
29
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
30

31 32 33 34
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Q
qijun 已提交
35 36 37
namespace paddle {
namespace operators {

D
dzhwinter 已提交
38 39 40 41
/* Use ugly global variable, for the using in python layer side
   Please refer to the layer_helper.py and get the details.
 */
static std::unordered_set<std::string> InplaceOpSet = {
Z
zhoukunsheng 已提交
42 43
    "sigmoid", "exp",        "relu",  "tanh",      "sqrt",         "ceil",
    "floor",   "reciprocal", "relu6", "soft_relu", "hard_sigmoid", "rsqrt"};
D
dzhwinter 已提交
44

45 46 47 48 49 50 51 52 53 54 55 56
static bool IsInplace(const std::string& op) {
  bool inplace = InplaceOpSet.count(op);
  // for op_grad
  const int kGradSuffixLen = 4;
  if (op.size() > kGradSuffixLen &&
      op.compare(op.size() - kGradSuffixLen - 1, kGradSuffixLen, "grad")) {
    inplace =
        InplaceOpSet.count(op.substr(0, op.size() - (kGradSuffixLen + 1)));
  }
  return inplace;
}

C
chengduo 已提交
57 58 59 60 61 62
/* The following operator can be used to process SelectedRows, because the
 * output of those operator for zero is zero too.
 */
static std::unordered_set<std::string> CanBeUsedBySelectedRows = {
    "abs", "abs_grad", "square", "square_grad", "sqrt", "sqrt_grad"};

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
inline void ExtractActivationTensor(const framework::ExecutionContext& context,
                                    const framework::Tensor** X,
                                    framework::Tensor** Out) {
  auto x_var = context.InputVar("X");
  auto out_var = context.OutputVar("Out");
  PADDLE_ENFORCE(x_var != nullptr,
                 "Cannot get input Variable X, variable name = %s",
                 context.op().Input("X"));
  PADDLE_ENFORCE(out_var != nullptr,
                 "Cannot get output Variable Out, variable name = %s",
                 context.op().Output("Out"));
  if (CanBeUsedBySelectedRows.count(context.op().Type())) {
    *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
    *Out = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        out_var);
  } else {
    *X = context.Input<framework::Tensor>("X");
    *Out = context.Output<framework::Tensor>("Out");
  }

  PADDLE_ENFORCE(*Out != nullptr,
                 "Cannot get output tensor Out, variable name = %s",
                 context.op().Output("Out"));
}

inline void ExtractActivationGradTensor(
    const framework::ExecutionContext& context, const framework::Tensor** X,
    const framework::Tensor** Out, const framework::Tensor** dOut,
    framework::Tensor** dX) {
  auto out_var = context.InputVar("Out");
  auto out_grad_var = context.InputVar(framework::GradVarName("Out"));
  auto x_grad_var = context.OutputVar(framework::GradVarName("X"));
  PADDLE_ENFORCE(out_var != nullptr,
                 "Cannot get input Variable Out, variable name = %s",
                 context.op().Input("Out"));
  PADDLE_ENFORCE(out_grad_var != nullptr,
                 "Cannot get input Variable %s, variable name = %s",
                 framework::GradVarName("Out"),
                 context.op().Input(framework::GradVarName("Out")));
  PADDLE_ENFORCE(x_grad_var != nullptr,
                 "Cannot get output Variable %s, variable name = %s",
                 framework::GradVarName("X"),
                 context.op().Output(framework::GradVarName("X")));

  if (CanBeUsedBySelectedRows.count(context.op().Type())) {
    *Out = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*out_var);
    *dOut = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(
        *out_grad_var);
    *dX = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        x_grad_var);
  } else {
    *Out = context.Input<framework::Tensor>("Out");
    *dOut = context.Input<framework::Tensor>(framework::GradVarName("Out"));
    *dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
  }
  PADDLE_ENFORCE(*dX != nullptr,
                 "Cannot get output tensor %s, variable name = %s",
                 framework::GradVarName("X"),
                 context.op().Output(framework::GradVarName("X")));

  bool inplace = IsInplace(context.op().Type());
  if (!inplace) {
C
chengduo 已提交
125 126
    auto x_var = context.InputVar("X");
    PADDLE_ENFORCE(x_var != nullptr,
127
                   "Cannot get input tensor X, variable name = %s",
C
chengduo 已提交
128 129
                   context.op().Input("X"));
    if (CanBeUsedBySelectedRows.count(context.op().Type())) {
130
      *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
C
chengduo 已提交
131
    } else {
132
      *X = context.Input<framework::Tensor>("X");
C
chengduo 已提交
133
    }
134 135 136 137 138
  } else {
    VLOG(10) << " Inplace activation of Op : " << context.op().Type();
    *X = *dX;
  }
}
C
chengduo 已提交
139

140 141 142 143 144
template <typename DeviceContext, typename Functor>
class ActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
C
chengduo 已提交
145

146 147 148 149
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* X = nullptr;
    framework::Tensor* Out = nullptr;
    ExtractActivationTensor(context, &X, &Out);
C
chengduo 已提交
150
    Out->mutable_data<T>(context.GetPlace());
151 152 153

    auto x = framework::EigenVector<T>::Flatten(detail::Ref(X));
    auto out = framework::EigenVector<T>::Flatten(detail::Ref(Out));
Q
QI JUN 已提交
154 155
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
156
    Functor functor;
157 158 159 160 161

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
F
fengjiayi 已提交
162
    functor(*place, x, out);
Q
qijun 已提交
163 164 165
  }
};

Q
QI JUN 已提交
166
template <typename DeviceContext, typename Functor>
167 168
class ActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
169
 public:
170
  using T = typename Functor::ELEMENT_TYPE;
Q
qijun 已提交
171
  void Compute(const framework::ExecutionContext& context) const override {
172 173 174 175
    const framework::Tensor *X, *Out, *dOut;
    framework::Tensor* dX = nullptr;
    X = Out = dOut = nullptr;
    ExtractActivationGradTensor(context, &X, &Out, &dOut, &dX);
Q
qijun 已提交
176
    dX->mutable_data<T>(context.GetPlace());
177 178 179 180
    auto dout = framework::EigenVector<T>::Flatten(detail::Ref(dOut));
    auto out = framework::EigenVector<T>::Flatten(detail::Ref(Out));
    auto dx = framework::EigenVector<T>::Flatten(detail::Ref(dX));
    auto x = framework::EigenVector<T>::Flatten(detail::Ref(X));
Q
QI JUN 已提交
181 182
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
183
    Functor functor;
184 185 186 187
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
188
    functor(*place, x, out, dout, dx);
Q
qijun 已提交
189 190 191
  }
};

192 193 194 195 196 197 198
template <typename T>
struct BaseActivationFunctor {
  using ELEMENT_TYPE = T;

  using AttrPair = std::vector<std::pair<const char*, float*>>;

  AttrPair GetAttrs() { return AttrPair(); }
D
dzhwinter 已提交
199 200 201 202 203 204 205 206

  /* NOTE(*): Output reuse X memory if X is not dependented by its Gradient.
     For example, sigmoid op's gradient didn't involve x, so its output can
     reuse
     input memory. But abs op's gradient use x, it can not be inplaced.
     gradient did use x.
   */
  bool Inplace() const { return false; }
207 208
};

209
// sigmoid(x) = 1 / (1 + exp(-x))
Q
qijun 已提交
210
template <typename T>
211
struct SigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
212 213 214
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
Q
qijun 已提交
215 216 217
  }
};

218
template <typename T>
219
struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
220 221 222 223
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out * (static_cast<T>(1) - out);
Q
qijun 已提交
224 225 226
  }
};

227 228 229 230
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// We can rewrite the above equation as:
F
fengjiayi 已提交
231
// out = -log( exp(0) + exp(-x)) [since exp(0) = 1]
232 233 234 235 236 237 238 239 240 241
//   = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0)))
//   = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x -
//           max(-x, 0)))
//   = -log( exp(max(-x, 0)) * (exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
//   = -log( exp(max(-x, 0)) - log(exp(-max(-x, 0)) + exp(-x - max(-x, 0)))
//
// Hence, logsigmoid(x) = - (max(-x, 0) + log(exp(-max(-x, 0))
// + exp(-x - max(-x, 0))))
template <typename T>
struct LogSigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
242 243
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
244
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
F
fengjiayi 已提交
245
    out.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log());
246 247 248 249 250 251 252 253
  }
};

// Originally: f' = exp(-x) / (1 + exp(-x))
// For numerical stability: f' = exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) +
// exp(-x - max(-x, 0)))
template <typename T>
struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
254 255 256
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
257 258
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    dx.device(d) =
F
fengjiayi 已提交
259
        dout * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp()));
260 261 262
  }
};

Q
qijun 已提交
263
// exp(x) = e^x
264 265
template <typename T>
struct ExpFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
266 267 268
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.exp();
Q
qijun 已提交
269 270 271
  }
};

272 273
template <typename T>
struct ExpGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
274 275 276 277
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out;
Q
qijun 已提交
278 279 280
  }
};

Q
qijun 已提交
281
// relu(x) = max(x, 0)
Q
qijun 已提交
282
template <typename T>
283
struct ReluFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
284 285 286
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0));
Q
qijun 已提交
287 288
  }
};
Q
qijun 已提交
289

Q
qijun 已提交
290
template <typename T>
291
struct ReluGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
292 293 294
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
295
    dx.device(d) = dout * (out > static_cast<T>(0)).template cast<T>();
Q
qijun 已提交
296 297
  }
};
Q
qijun 已提交
298

C
Clementine 已提交
299 300 301 302 303
// gelu(x) = 0.5 * x *  (1 + erf(x / sqrt(2)))
template <typename T>
struct GeluFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yihua Xu 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
// Because the execute or device context can not be deliver here, it keep the
// marco for NVCC.
#if defined(PADDLE_WITH_MKLML) && !defined(_WIN32) && !defined(__APPLE__) && \
    !defined(__OSX__) && !defined(PADDLE_WITH_CUDA)
    auto x_data = x.data();
    auto out_data = out.data();
    int n = std::min(x.size(), out.size());

    std::memset(out_data, 0, n * sizeof(T));
    math::CBlas<T>::AXPY(n, static_cast<T>(M_SQRT1_2), x_data, 1, out_data, 1);
    math::CBlas<T>::VMERF(n, out_data, out_data, VML_LA);
    for (int i = 0; i < n; i++) {
      out_data[i] += static_cast<T>(1);
    }
    math::CBlas<T>::VMUL(n, x_data, out_data, out_data);
    for (int i = 0; i < n; i++) {
      out_data[i] *= static_cast<T>(0.5);
    }
#else
323
    auto temp = (x * static_cast<T>(M_SQRT1_2)).erf();
C
Clementine 已提交
324
    out.device(d) = x * static_cast<T>(0.5) * (static_cast<T>(1) + temp);
Y
Yihua Xu 已提交
325
#endif
C
Clementine 已提交
326 327 328 329 330 331 332 333
  }
};

template <typename T>
struct GeluGradFunctor : BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
334 335 336 337 338 339
    auto first = static_cast<T>(0.5) *
                 (static_cast<T>(1) + ((x * static_cast<T>(M_SQRT1_2)).erf()));

    auto second = static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2) * x *
                  (-static_cast<T>(0.5) * x.square()).exp();
    dx.device(d) = dout * (first + second);
C
Clementine 已提交
340 341 342
  }
};

343
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
344 345
template <typename T>
struct TanhFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
346 347 348
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.tanh();
Q
qijun 已提交
349 350 351 352
  }
};

template <typename T>
353
struct TanhGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
354 355 356 357
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) - out * out);
Q
qijun 已提交
358 359 360
  }
};

K
Kavya Srinet 已提交
361 362 363 364
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct TanhShrinkFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
365 366 367
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x - x.tanh();
K
Kavya Srinet 已提交
368 369 370 371 372
  }
};

template <typename T>
struct TanhShrinkGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
373 374 375 376
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x.tanh() * x.tanh());
K
Kavya Srinet 已提交
377 378 379
  }
};

380 381 382 383 384 385 386 387 388
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct HardShrinkFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
389 390
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
391 392
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
F
fengjiayi 已提交
393
    out.device(d) = x * (temp1 + temp2);
394 395 396 397 398 399 400 401 402 403 404
  }
};

template <typename T>
struct HardShrinkGradFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
405 406 407
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
408 409
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
F
fengjiayi 已提交
410
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
411 412 413
  }
};

K
Kexin Zhao 已提交
414
// softshrink(x) = x - lambda, if x > lambda; x + lambda, if x < -lambda; 0
415 416 417 418 419 420 421 422
// otherwise
template <typename T>
struct SoftShrinkFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }

F
fengjiayi 已提交
423 424
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
425 426 427
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
F
fengjiayi 已提交
428
    out.device(d) = temp1 * (x - lambdaT) + temp2 * (x + lambdaT);
429 430 431 432 433 434 435 436 437
  }
};

template <typename T>
struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }
F
fengjiayi 已提交
438 439 440
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
441 442 443
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
F
fengjiayi 已提交
444
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
445 446 447
  }
};

Q
qijun 已提交
448
// sqrt(x) = x^(1/2)
449 450
template <typename T>
struct SqrtFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
451 452 453
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.sqrt();
Q
qijun 已提交
454 455 456 457
  }
};

template <typename T>
458
struct SqrtGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
459 460 461
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
C
chengduo 已提交
462
    dx.device(d) = static_cast<T>(0.5) * dout / out;
Q
qijun 已提交
463 464 465
  }
};

Z
zhoukunsheng 已提交
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
// rsqrt(x) = x^(-1/2)
template <typename T>
struct RsqrtFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.rsqrt();
  }
};

template <typename T>
struct RsqrtGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = static_cast<T>(-0.5) * dout * out.pow(3);
  }
};

D
dzhwinter 已提交
484 485 486
// ceil(x) = ceiling(x)
template <typename T>
struct CeilFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
487 488 489
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.ceil();
D
dzhwinter 已提交
490 491 492 493 494
  }
};

template <typename T>
struct ZeroGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
495 496 497
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
498
    dx.device(d) = static_cast<T>(0) / out;
D
dzhwinter 已提交
499 500 501 502 503 504
  }
};

// floor(x) = flooring(x)
template <typename T>
struct FloorFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
505 506
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Q
Qiao Longfei 已提交
507
    out.device(d) = x.floor();
D
dzhwinter 已提交
508 509 510
  }
};

C
add cos  
chengduoZH 已提交
511 512 513 514 515
template <typename T>
struct Sine {
  HOSTDEVICE T operator()(const T& val) const { return sin(val); }
};

516 517 518 519 520 521 522
template <>
struct Sine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(sin(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
523 524 525 526 527
template <typename T>
struct Cosine {
  HOSTDEVICE T operator()(const T& val) const { return cos(val); }
};

528 529 530 531 532 533 534
template <>
struct Cosine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(cos(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
// cosine'(x) = -sin(x)
template <typename T>
struct CosGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = -dout * x.unaryExpr(Sine<T>());
  }
};

// cosine(x) = cos(x)
template <typename T>
struct CosFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Cosine<T>());
  }
};

// sine'(x) = cos(x)
template <typename T>
struct SinGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.unaryExpr(Cosine<T>());
  }
};

// sine(x) = sin(x)
template <typename T>
struct SinFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Sine<T>());
  }
};

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
template <typename T>
struct Acos {
  HOSTDEVICE T operator()(const T& val) const { return acos(val); }
};

template <>
struct Acos<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(acos(static_cast<float>(val)));
  }
};

// Acos(x) = acos(x)
template <typename T>
struct AcosFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Acos<T>());
  }
};

// acos'(x) = -1/sqrt(1-x^2)
template <typename T>
struct AcosGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) =
        -dout * static_cast<T>(1) / (static_cast<T>(1) - x.square()).sqrt();
  }
};

template <typename T>
struct Asin {
  HOSTDEVICE T operator()(const T& val) const { return asin(val); }
};

template <>
struct Asin<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(asin(static_cast<float>(val)));
  }
};

// Asin(x) = asin(x)
template <typename T>
struct AsinFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Asin<T>());
  }
};

// asin'(x) = 1/sqrt(1-x^2)
template <typename T>
struct AsinGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) =
        dout * static_cast<T>(1) / (static_cast<T>(1) - x.square()).sqrt();
  }
};

template <typename T>
struct Atan {
  HOSTDEVICE T operator()(const T& val) const { return atan(val); }
};

template <>
struct Atan<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(atan(static_cast<float>(val)));
  }
};

// Atan(x) = atan(x)
template <typename T>
struct AtanFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Atan<T>());
  }
};

// atan'(x) =  1 / (1 + x^2)
template <typename T>
struct AtanGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(1) / (static_cast<T>(1) + x.square());
  }
};

D
dzhwinter 已提交
668 669 670
// round(x) = [x]
template <typename T>
struct RoundFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
671 672 673
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.round();
D
dzhwinter 已提交
674 675 676
  }
};

Q
qijun 已提交
677
// abs(x) = |x|
678 679
template <typename T>
struct AbsFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
680 681 682
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.abs();
Q
qijun 已提交
683 684 685
  }
};

686 687
template <typename T>
struct AbsGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
688 689 690 691
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.sign();
692 693 694
  }
};

Q
qijun 已提交
695 696
// reciprocal(x) = 1 / x
template <typename T>
697
struct ReciprocalFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
698 699 700
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / x;
Q
qijun 已提交
701 702 703
  }
};

704
template <typename T>
705
struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
706 707 708 709
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(-1) * out * out;
Q
qijun 已提交
710 711 712 713
  }
};

// log(x) = natural logarithm of x
714 715
template <typename T>
struct LogFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
716 717 718
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log();
Q
qijun 已提交
719 720 721
  }
};

722
template <typename T>
723
struct LogGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
724 725 726 727
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / x);
Q
qijun 已提交
728 729 730 731
  }
};

// square(x) = x^2
732 733
template <typename T>
struct SquareFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
734 735 736
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.square();
Q
qijun 已提交
737
  }
738
};
Q
qijun 已提交
739

740
template <typename T>
741
struct SquareGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
742 743 744 745
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(2) * x;
746 747 748
  }
};

749 750 751 752 753 754 755 756 757 758
template <typename T>
struct BReluFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;

  // NOTE: Explicit hides the `BaseActivationFunctor<T>::GetAttrs`
  // not polymorphism for speed.
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
759

F
fengjiayi 已提交
760 761 762
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
763
        x.cwiseMax(static_cast<T>(t_min)).cwiseMin(static_cast<T>(t_max));
764 765 766
  }
};

767 768 769 770 771 772 773
template <typename T>
struct BReluGradFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
F
fengjiayi 已提交
774 775 776 777
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
Y
Yu Yang 已提交
778 779
                   ((x > static_cast<T>(t_min)) * (x < static_cast<T>(t_max)))
                       .template cast<T>();
780 781 782
  }
};

783 784 785 786 787 788 789 790 791
// relu6(x) = min(max(0, x), 6)
template <typename T>
struct Relu6Functor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
792 793 794
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
795
        x.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(threshold));
796 797 798 799 800 801 802 803 804
  }
};

template <typename T>
struct Relu6GradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
805 806 807
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
808 809 810 811
    dx.device(d) =
        dout *
        ((out > static_cast<T>(0)) * (out < static_cast<T>(threshold)))
            .template cast<T>();
812 813 814
  }
};

K
kexinzhao 已提交
815 816 817 818 819 820 821
// softplus(x) = log(1 + exp(x))
// When x is a very large positive number, exp(x) may explode to inf,
// Using trick below for numerical stability
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// Then: softplus(x) = max(x, 0) + log(exp(-max(x, 0)) + exp(x - max(x, 0)))
template <typename T>
struct SoftplusFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
822 823
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
K
kexinzhao 已提交
824
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
825
    out.device(d) = temp + (((-temp).exp() + (x - temp).exp()).log());
K
kexinzhao 已提交
826 827 828 829 830 831 832 833 834
  }
};

// d(softplus(x))/dx = exp(x) / (1 + exp(x))
// For numerical stability:
// d(softplus(x))/dx = exp(x - max(x, 0)) / (exp(-max(x, 0)) +
// exp(x - max(x, 0)))
template <typename T>
struct SoftplusGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
835 836 837
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
K
kexinzhao 已提交
838
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
839 840
    dx.device(d) =
        dout * ((x - temp).exp() / ((-temp).exp() + (x - temp).exp()));
K
kexinzhao 已提交
841 842 843
  }
};

844 845
// softsign(x) = x / (1 + |x|)
template <typename T>
846
struct SoftsignFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
847 848 849
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
    out.device(d) = x / (static_cast<T>(1) + x.abs());
850 851 852 853 854 855
  }
};

// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function
template <typename T>
856
struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
857 858 859
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
860
    dx.device(d) =
F
fengjiayi 已提交
861
        dout * (static_cast<T>(1) / (static_cast<T>(1) + x.abs()).square());
862 863 864
  }
};

865 866 867 868 869 870
template <typename T>
struct SoftReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
871

F
fengjiayi 已提交
872 873
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
874 875
    auto tmp = static_cast<T>(threshold);
    auto temp = x.cwiseMax(-tmp).cwiseMin(tmp);
F
fengjiayi 已提交
876
    out.device(d) = (static_cast<T>(1) + temp.exp()).log();
877 878 879
  }
};

880 881 882 883 884 885
template <typename T>
struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
886 887 888
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
889
    auto tmp = static_cast<T>(threshold);
D
dzhwinter 已提交
890
    auto temp = ((out > -tmp) * (out < tmp)).template cast<T>().eval();
F
fengjiayi 已提交
891
    dx.device(d) = dout * (static_cast<T>(1) - (-out).exp()) * temp;
892 893 894
  }
};

K
Kavya Srinet 已提交
895 896 897 898 899 900
template <typename T>
struct LeakyReluFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
901

F
fengjiayi 已提交
902 903 904
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(alpha) * x);
905 906 907
  }
};

K
Kavya Srinet 已提交
908 909 910 911 912 913
template <typename T>
struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
914 915 916
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
917 918
    auto temp1 = static_cast<T>(alpha) *
                 (x < static_cast<T>(0)).template cast<T>().eval();
K
Kavya Srinet 已提交
919
    auto temp2 = (x >= static_cast<T>(0)).template cast<T>().eval();
F
fengjiayi 已提交
920
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
921 922 923
  }
};

924 925 926 927 928 929
template <typename T>
struct ELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
930

F
fengjiayi 已提交
931 932 933 934 935
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0)) +
                    (static_cast<T>(alpha) * (x.exp() - static_cast<T>(1)))
                        .cwiseMin(static_cast<T>(0));
936 937 938
  }
};

939 940 941 942 943 944
template <typename T>
struct ELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
945 946 947 948 949
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x > static_cast<T>(0)).template cast<T>() +
                   dout * (out + static_cast<T>(alpha)) *
Y
Yu Yang 已提交
950
                       (x < static_cast<T>(0)).template cast<T>();
951 952 953
  }
};

Q
QI JUN 已提交
954
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
955 956 957 958 959 960
template <typename T>
struct PowFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
961 962 963
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.pow(static_cast<T>(factor));
964 965 966
  }
};

967 968 969 970 971 972
template <typename T>
struct PowGradFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
973 974 975 976
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(factor) *
C
chengduo 已提交
977
                   x.pow(static_cast<T>(factor) - static_cast<T>(1));
978 979 980
  }
};

981 982 983 984 985 986 987
template <typename T>
struct STanhFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
988

F
fengjiayi 已提交
989 990 991
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
992
        static_cast<T>(scale_b) * (static_cast<T>(scale_a) * x).tanh();
993 994 995
  }
};

996 997 998 999 1000 1001 1002
template <typename T>
struct STanhGradFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
1003

F
fengjiayi 已提交
1004 1005 1006
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1007 1008 1009
    auto a = static_cast<T>(scale_a);
    auto b = static_cast<T>(scale_b);
    auto temp = (a * x).tanh() * (a * x).tanh();
F
fengjiayi 已提交
1010
    dx.device(d) = dout * a * b * (static_cast<T>(1) - temp);
Q
qijun 已提交
1011 1012 1013
  }
};

1014 1015 1016 1017 1018 1019 1020
template <typename T>
struct ThresholdedReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
1021 1022
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
1023
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
1024
    out.device(d) = (x > th).template cast<T>() * x;
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
  }
};

template <typename T>
struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
1035 1036 1037
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
1038
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
1039
    dx.device(d) = dout * (x > th).template cast<T>();
1040 1041 1042
  }
};

1043 1044 1045 1046 1047 1048 1049 1050
template <typename T>
struct HardSigmoidFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

F
fengjiayi 已提交
1051 1052
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
1053
    auto temp = x * static_cast<T>(slope) + static_cast<T>(offset);
F
fengjiayi 已提交
1054 1055
    out.device(d) =
        temp.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(1));
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
  }
};

template <typename T>
struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }
F
fengjiayi 已提交
1066 1067 1068 1069 1070 1071 1072
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
                   ((out > static_cast<T>(0)) * (out < static_cast<T>(1)))
                       .template cast<T>() *
                   static_cast<T>(slope);
1073 1074 1075
  }
};

A
Abhinav Arora 已提交
1076 1077 1078 1079 1080 1081 1082
template <typename T>
struct SwishFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
1083 1084 1085
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x / (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
A
Abhinav Arora 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
  }
};

template <typename T>
struct SwishGradFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
1096 1097 1098
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
A
Abhinav Arora 已提交
1099
    auto temp1 = static_cast<T>(1) /
1100
                 (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
D
dzhwinter 已提交
1101 1102
    auto temp2 = temp1 * (static_cast<T>(1) - (static_cast<T>(beta) * out));
    dx.device(d) = dout * ((static_cast<T>(beta) * out) + temp2);
A
Abhinav Arora 已提交
1103 1104 1105
  }
};

Q
qijun 已提交
1106 1107
}  // namespace operators
}  // namespace paddle
1108

1109 1110 1111 1112
#define FOR_EACH_KERNEL_FUNCTOR(__macro)                             \
  __macro(sigmoid, SigmoidFunctor, SigmoidGradFunctor);              \
  __macro(logsigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor);     \
  __macro(exp, ExpFunctor, ExpGradFunctor);                          \
1113
  __macro(relu, ReluFunctor, ReluGradFunctor);                       \
C
Clementine 已提交
1114
  __macro(gelu, GeluFunctor, GeluGradFunctor);                       \
1115
  __macro(tanh, TanhFunctor, TanhGradFunctor);                       \
1116
  __macro(atan, AtanFunctor, AtanGradFunctor);                       \
1117 1118
  __macro(softshrink, SoftShrinkFunctor, SoftShrinkGradFunctor);     \
  __macro(sqrt, SqrtFunctor, SqrtGradFunctor);                       \
Z
zhoukunsheng 已提交
1119
  __macro(rsqrt, RsqrtFunctor, RsqrtGradFunctor);                    \
1120
  __macro(abs, AbsFunctor, AbsGradFunctor);                          \
D
dzhwinter 已提交
1121 1122
  __macro(ceil, CeilFunctor, ZeroGradFunctor);                       \
  __macro(floor, FloorFunctor, ZeroGradFunctor);                     \
C
add cos  
chengduoZH 已提交
1123
  __macro(cos, CosFunctor, CosGradFunctor);                          \
1124
  __macro(acos, AcosFunctor, AcosGradFunctor);                       \
C
add sin  
chengduoZH 已提交
1125
  __macro(sin, SinFunctor, SinGradFunctor);                          \
1126
  __macro(asin, AsinFunctor, AsinGradFunctor);                       \
D
dzhwinter 已提交
1127
  __macro(round, RoundFunctor, ZeroGradFunctor);                     \
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
  __macro(reciprocal, ReciprocalFunctor, ReciprocalGradFunctor);     \
  __macro(log, LogFunctor, LogGradFunctor);                          \
  __macro(square, SquareFunctor, SquareGradFunctor);                 \
  __macro(brelu, BReluFunctor, BReluGradFunctor);                    \
  __macro(soft_relu, SoftReluFunctor, SoftReluGradFunctor);          \
  __macro(pow, PowFunctor, PowGradFunctor);                          \
  __macro(stanh, STanhFunctor, STanhGradFunctor);                    \
  __macro(softplus, SoftplusFunctor, SoftplusGradFunctor);           \
  __macro(softsign, SoftsignFunctor, SoftsignGradFunctor);           \
  __macro(relu6, Relu6Functor, Relu6GradFunctor);                    \
  __macro(leaky_relu, LeakyReluFunctor, LeakyReluGradFunctor);       \
  __macro(tanh_shrink, TanhShrinkFunctor, TanhShrinkGradFunctor);    \
  __macro(elu, ELUFunctor, ELUGradFunctor);                          \
  __macro(hard_shrink, HardShrinkFunctor, HardShrinkGradFunctor);    \
  __macro(hard_sigmoid, HardSigmoidFunctor, HardSigmoidGradFunctor); \
A
Abhinav Arora 已提交
1143
  __macro(swish, SwishFunctor, SwishGradFunctor);                    \
1144
  __macro(thresholded_relu, ThresholdedReluFunctor, ThresholdedReluGradFunctor);