memory_optimize_helper.h 5.4 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <algorithm>
#include <iostream>
#include <iterator>
#include <list>
D
dzhwinter 已提交
20 21
#include <map>
#include <set>
D
dzhwinter 已提交
22 23 24 25 26 27 28 29 30 31
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/ir/graph.h"

namespace paddle {
namespace framework {
namespace details {

D
dzhwinter 已提交
32
constexpr char kAllOpDescs[] = "all_op_descs";
D
dzhwinter 已提交
33

D
dzhwinter 已提交
34
std::vector<ir::Node*> SortOpLikeDescOrder(const ir::Graph& graph);
D
dzhwinter 已提交
35

D
dzhwinter 已提交
36 37 38 39 40 41 42 43 44 45
// NOTE(dzh): A ordered set for node reuse in memory optimize.
// the orderedset sort node in ascend order(by node bytes size).
// in fluid, -1 means the batch_size, which is determined in runtime.
// So the reuse happens between nodes who's batch_size both are -1
// simultaneously or not.
//
// sort rule:
// rule 0 : smaller node ranking in front.
// rule 1 : batch_size equal -1 ranking in the front than the node not.
//
D
dzhwinter 已提交
46 47 48
// For example,
// node0[-1, 1] node1[-1, 1, 1], node2[1,1], node3[1,1024], ..

D
dzhwinter 已提交
49 50 51 52 53 54
class OrderedSet {
 public:
  // nodes with same name exists in pool.
  using NodeVector = std::vector<ir::Node*>;
  using Iter = typename std::list<NodeVector>::iterator;
  using ConstIter = typename std::list<NodeVector>::const_iterator;
D
dzhwinter 已提交
55

D
dzhwinter 已提交
56
  void Insert(ir::Node* var);
D
dzhwinter 已提交
57
  void Erase(ir::Node* var);
58
  void Erase(const std::string& var);
D
dzhwinter 已提交
59 60 61 62 63 64 65
  bool Has(ir::Node* var) const;
  void Clear() {
    mark_table_.clear();
    nodes_.clear();
  }
  // find the bestfit shape node block with var.
  ir::Node* FindBestFitNode(ir::Node* var) const;
D
dzhwinter 已提交
66
  ir::Node* FindNextBestFitNode(ir::Node* var, ir::Node* prev) const;
D
dzhwinter 已提交
67
  // map store non-const iterator, can not promise const
D
dzhwinter 已提交
68
  int GetNodeIndexInPool(ir::Node* var);
D
dzhwinter 已提交
69 70 71 72 73 74 75 76
  // pool all node to string
  std::string ToString() const;

  Iter begin() { return nodes_.begin(); }
  Iter end() { return nodes_.end(); }
  ConstIter begin() const { return nodes_.begin(); }
  ConstIter end() const { return nodes_.end(); }

D
dzhwinter 已提交
77
  size_t size() const { return nodes_.size(); }
D
dzhwinter 已提交
78

D
dzhwinter 已提交
79 80 81
 private:
  // for searching.
  std::unordered_map<std::string, Iter> mark_table_;
D
dzhwinter 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  // node pool
  std::list<NodeVector> nodes_;
};

class ControlFlowGraph {
 public:
  ControlFlowGraph() = default;
  // IR Graph
  explicit ControlFlowGraph(const ir::Graph& graph);

  void LiveVariableAnalysis();

  void RenameVarInCFGGraph(const std::string& old_node,
                           const std::string& new_node, int begin_idx);

  const std::set<std::string> LiveIn(ir::Node* op) const;
  const std::set<std::string> LiveOut(ir::Node* op) const;
  const std::set<std::string> Use(ir::Node* op) const;
  const std::vector<ir::Node*> Ops() const;
  std::vector<ir::Node*>& Ops();

  // for ssa-graph nodes
  ir::Node* GetNodeByName(const std::string& name, ir::Node* op) const;

 private:
  void BuildCFGGraph();
  void ConnectNodes();

  using NodeListMap = std::unordered_map<ir::Node*, std::set<ir::Node*>>;
  using VarSetMap = std::map<ir::Node*, std::set<std::string>>;
  // successors ops use the output variables.
  NodeListMap successors_;
  // predecessors ops generated input variables.
  NodeListMap predecessors_;
  // variables lived before run current op.
  VarSetMap live_in_;
  // variables lived after run current op.
  VarSetMap live_out_;
  VarSetMap uses_;  // op inputs
  VarSetMap defs_;  // op outputs

  std::vector<ir::Node*> ops_;  // op sequence by topology sort
D
dzhwinter 已提交
124 125
};

D
dzhwinter 已提交
126 127 128
// valid a tensor can be reuse or not
bool NodeCanReused(ir::Node* node);

D
dzhwinter 已提交
129 130 131
// valid a tensor can be reuse or not.
bool NodeCanReused(const VarDesc& node);

D
dzhwinter 已提交
132 133 134
// check op has subblock or not
bool OpHasSubBlock(OpDesc* desc);

D
dzhwinter 已提交
135
// node memory size in bytes
D
dzhwinter 已提交
136
size_t NodeSize(ir::Node* n);
D
dzhwinter 已提交
137

D
dzhwinter 已提交
138
// node memory size in bytes
D
dzhwinter 已提交
139
size_t NodeSize(const VarDesc&);
D
dzhwinter 已提交
140

D
dzhwinter 已提交
141 142
std::string DebugString(ir::Node* var);

D
dzhwinter 已提交
143 144 145 146
// NOTE(dzhwinter)
// after node reuse, the replaced node shape is
// different with its VarDesc. So need to find the
// correct VarDesc in Block.
D
dzhwinter 已提交
147 148
VarDesc* FindVarDescInBlock(ir::Node* n);

D
dzhwinter 已提交
149 150 151 152 153
static inline bool IsSameDesc(OpDesc* op1, OpDesc* op2) {
  return op1->Type() == op2->Type() && op1->Inputs() == op2->Inputs() &&
         op1->Outputs() == op2->Outputs();
}

D
dzhwinter 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
template <typename Container, typename Callback>
class FilterVariableImpl {
 public:
  void operator()(const Container& nodes, Callback callback) {
    for (auto* node : nodes) {
      callback(node);
    }
  }
};

// filter var node for op->inputs/outputs
template <typename Callback>
class FilterVariableImpl<std::vector<ir::Node*>, Callback> {
 public:
  void operator()(const std::vector<ir::Node*>& nodes, Callback callback) {
    for (auto* var : nodes) {
      if (var->IsVar() && !var->IsCtrlVar()) {
        callback(var);
      }
    }
  }
};

template <typename Container, typename Callback>
void FilterVariables(const Container& nodes, Callback callback) {
  FilterVariableImpl<Container, Callback>()(nodes, callback);
}

D
dzhwinter 已提交
182 183 184
}  // namespace details
}  // namespace framework
}  // namespace paddle