memory_optimize_helper.h 5.4 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <algorithm>
#include <iostream>
#include <iterator>
#include <list>
D
dzhwinter 已提交
20 21
#include <map>
#include <set>
D
dzhwinter 已提交
22 23 24 25 26 27 28 29 30 31
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/ir/graph.h"

namespace paddle {
namespace framework {
namespace details {

D
dzhwinter 已提交
32
constexpr char kAllOpDescs[] = "all_op_descs";
D
dzhwinter 已提交
33

D
dzhwinter 已提交
34
std::vector<ir::Node*> SortOpLikeDescOrder(const ir::Graph& graph);
D
dzhwinter 已提交
35

D
dzhwinter 已提交
36 37 38 39 40 41 42 43 44 45
// NOTE(dzh): A ordered set for node reuse in memory optimize.
// the orderedset sort node in ascend order(by node bytes size).
// in fluid, -1 means the batch_size, which is determined in runtime.
// So the reuse happens between nodes who's batch_size both are -1
// simultaneously or not.
//
// sort rule:
// rule 0 : smaller node ranking in front.
// rule 1 : batch_size equal -1 ranking in the front than the node not.
//
D
dzhwinter 已提交
46 47 48
// For example,
// node0[-1, 1] node1[-1, 1, 1], node2[1,1], node3[1,1024], ..

D
dzhwinter 已提交
49 50 51 52 53 54
class OrderedSet {
 public:
  // nodes with same name exists in pool.
  using NodeVector = std::vector<ir::Node*>;
  using Iter = typename std::list<NodeVector>::iterator;
  using ConstIter = typename std::list<NodeVector>::const_iterator;
D
dzhwinter 已提交
55

D
dzhwinter 已提交
56
  void Insert(ir::Node* var);
D
dzhwinter 已提交
57
  void Erase(ir::Node* var);
D
dzhwinter 已提交
58 59 60 61 62 63 64
  bool Has(ir::Node* var) const;
  void Clear() {
    mark_table_.clear();
    nodes_.clear();
  }
  // find the bestfit shape node block with var.
  ir::Node* FindBestFitNode(ir::Node* var) const;
D
dzhwinter 已提交
65
  ir::Node* FindNextBestFitNode(ir::Node* var, ir::Node* prev) const;
D
dzhwinter 已提交
66
  // map store non-const iterator, can not promise const
D
dzhwinter 已提交
67
  int GetNodeIndexInPool(ir::Node* var);
D
dzhwinter 已提交
68 69 70 71 72 73 74 75
  // pool all node to string
  std::string ToString() const;

  Iter begin() { return nodes_.begin(); }
  Iter end() { return nodes_.end(); }
  ConstIter begin() const { return nodes_.begin(); }
  ConstIter end() const { return nodes_.end(); }

D
dzhwinter 已提交
76
  size_t size() const { return nodes_.size(); }
D
dzhwinter 已提交
77

D
dzhwinter 已提交
78 79 80
 private:
  // for searching.
  std::unordered_map<std::string, Iter> mark_table_;
D
dzhwinter 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
  // node pool
  std::list<NodeVector> nodes_;
};

class ControlFlowGraph {
 public:
  ControlFlowGraph() = default;
  // IR Graph
  explicit ControlFlowGraph(const ir::Graph& graph);

  void LiveVariableAnalysis();

  void RenameVarInCFGGraph(const std::string& old_node,
                           const std::string& new_node, int begin_idx);

  const std::set<std::string> LiveIn(ir::Node* op) const;
  const std::set<std::string> LiveOut(ir::Node* op) const;
  const std::set<std::string> Use(ir::Node* op) const;
  const std::vector<ir::Node*> Ops() const;
  std::vector<ir::Node*>& Ops();

  // for ssa-graph nodes
  ir::Node* GetNodeByName(const std::string& name, ir::Node* op) const;

 private:
  void BuildCFGGraph();
  void ConnectNodes();

  using NodeListMap = std::unordered_map<ir::Node*, std::set<ir::Node*>>;
  using VarSetMap = std::map<ir::Node*, std::set<std::string>>;
  // successors ops use the output variables.
  NodeListMap successors_;
  // predecessors ops generated input variables.
  NodeListMap predecessors_;
  // variables lived before run current op.
  VarSetMap live_in_;
  // variables lived after run current op.
  VarSetMap live_out_;
  VarSetMap uses_;  // op inputs
  VarSetMap defs_;  // op outputs

  std::vector<ir::Node*> ops_;  // op sequence by topology sort
D
dzhwinter 已提交
123 124
};

D
dzhwinter 已提交
125 126 127
// valid a tensor can be reuse or not
bool NodeCanReused(ir::Node* node);

D
dzhwinter 已提交
128 129 130
// valid a tensor can be reuse or not.
bool NodeCanReused(const VarDesc& node);

D
dzhwinter 已提交
131 132 133
// check op has subblock or not
bool OpHasSubBlock(OpDesc* desc);

D
dzhwinter 已提交
134
// node memory size in bytes
D
dzhwinter 已提交
135
size_t NodeSize(ir::Node* n);
D
dzhwinter 已提交
136

D
dzhwinter 已提交
137
// node memory size in bytes
D
dzhwinter 已提交
138
size_t NodeSize(const VarDesc&);
D
dzhwinter 已提交
139

D
dzhwinter 已提交
140 141
std::string DebugString(ir::Node* var);

D
dzhwinter 已提交
142 143 144 145
// NOTE(dzhwinter)
// after node reuse, the replaced node shape is
// different with its VarDesc. So need to find the
// correct VarDesc in Block.
D
dzhwinter 已提交
146 147
VarDesc* FindVarDescInBlock(ir::Node* n);

D
dzhwinter 已提交
148 149 150 151 152
static inline bool IsSameDesc(OpDesc* op1, OpDesc* op2) {
  return op1->Type() == op2->Type() && op1->Inputs() == op2->Inputs() &&
         op1->Outputs() == op2->Outputs();
}

D
dzhwinter 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
template <typename Container, typename Callback>
class FilterVariableImpl {
 public:
  void operator()(const Container& nodes, Callback callback) {
    for (auto* node : nodes) {
      callback(node);
    }
  }
};

// filter var node for op->inputs/outputs
template <typename Callback>
class FilterVariableImpl<std::vector<ir::Node*>, Callback> {
 public:
  void operator()(const std::vector<ir::Node*>& nodes, Callback callback) {
    for (auto* var : nodes) {
      if (var->IsVar() && !var->IsCtrlVar()) {
        callback(var);
      }
    }
  }
};

template <typename Container, typename Callback>
void FilterVariables(const Container& nodes, Callback callback) {
  FilterVariableImpl<Container, Callback>()(nodes, callback);
}

D
dzhwinter 已提交
181 182 183
}  // namespace details
}  // namespace framework
}  // namespace paddle