test_pool_max_op.py 8.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from __future__ import division
17

C
chengduoZH 已提交
18 19
import unittest
import numpy as np
20
from op_test import OpTest
C
chengduoZH 已提交
21 22


23 24 25 26 27 28 29 30 31 32 33 34 35 36
def adaptive_start_index(index, input_size, output_size):
    return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
    return int(np.ceil((index + 1) * input_size / output_size))


def max_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=False,
                             adaptive=False):
C
chengduoZH 已提交
37 38

    N, C, D, H, W = x.shape
C
chengduoZH 已提交
39
    if global_pool:
C
chengduoZH 已提交
40
        ksize = [D, H, W]
C
chengduoZH 已提交
41 42
        paddings = [0, 0, 0]

43 44 45 46 47 48
    if adaptive:
        D_out, H_out, W_out = ksize
    else:
        D_out = (D - ksize[0] + 2 * paddings[0]) // strides[0] + 1
        H_out = (H - ksize[1] + 2 * paddings[1]) // strides[1] + 1
        W_out = (W - ksize[2] + 2 * paddings[2]) // strides[2] + 1
C
chengduoZH 已提交
49 50
    out = np.zeros((N, C, D_out, H_out, W_out))
    mask = np.zeros((N, C, D_out, H_out, W_out))
51
    for k in range(D_out):
52 53 54 55 56 57
        if adaptive:
            d_start = adaptive_start_index(k, D, ksize[0])
            d_end = adaptive_end_index(k, D, ksize[0])
        else:
            d_start = np.max((k * strides[0] - paddings[0], 0))
            d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
58
        for i in range(H_out):
59 60 61 62 63 64
            if adaptive:
                h_start = adaptive_start_index(i, H, ksize[1])
                h_end = adaptive_end_index(i, H, ksize[1])
            else:
                h_start = np.max((i * strides[1] - paddings[1], 0))
                h_end = np.min((i * strides[1] + ksize[1] - paddings[1], H))
65
            for j in range(W_out):
66 67 68 69 70 71
                if adaptive:
                    w_start = adaptive_start_index(j, W, ksize[2])
                    w_end = adaptive_end_index(j, W, ksize[2])
                else:
                    w_start = np.max((j * strides[2] - paddings[2], 0))
                    w_end = np.min((j * strides[2] + ksize[2] - paddings[2], W))
C
chengduoZH 已提交
72 73 74
                x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]

                out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))
C
chengduoZH 已提交
75

76 77
                for n in range(N):
                    for c in range(C):
C
chengduoZH 已提交
78 79 80 81 82 83 84 85 86 87
                        arr = x_masked[n, c, :, :, :]
                        index = np.where(arr == np.max(arr))
                        sub_deep = index[0][0]
                        sub_row = index[1][0]
                        sub_col = index[2][0]
                        index = ((d_start + sub_deep) * H +
                                 (h_start + sub_row)) * W + w_start + sub_col
                        mask[n, c, k, i, j] = index

    return out, mask
C
chengduoZH 已提交
88 89


90 91 92 93 94 95
def max_pool2D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=False,
                             adaptive=False):
C
chengduoZH 已提交
96 97

    N, C, H, W = x.shape
C
chengduoZH 已提交
98
    if global_pool:
C
chengduoZH 已提交
99
        ksize = [H, W]
C
chengduoZH 已提交
100 101
        paddings = [0, 0]

102 103 104 105 106
    if adaptive:
        H_out, W_out = ksize
    else:
        H_out = (H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
        W_out = (W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
C
chengduoZH 已提交
107 108
    out = np.zeros((N, C, H_out, W_out))
    mask = np.zeros((N, C, H_out, W_out))
109 110
    for i in range(H_out):
        for j in range(W_out):
111 112 113 114 115 116 117 118 119 120
            if adaptive:
                r_start = adaptive_start_index(i, H, ksize[0])
                r_end = adaptive_end_index(i, H, ksize[0])
                c_start = adaptive_start_index(j, W, ksize[1])
                c_end = adaptive_end_index(j, W, ksize[1])
            else:
                r_start = np.max((i * strides[0] - paddings[0], 0))
                r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
                c_start = np.max((j * strides[1] - paddings[1], 0))
                c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
C
chengduoZH 已提交
121 122 123 124
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

            out[:, :, i, j] = np.max(x_masked, axis=(2, 3))

125 126
            for n in range(N):
                for c in range(C):
C
chengduoZH 已提交
127 128 129 130 131 132 133 134
                    arr = x_masked[n, c, :, :]
                    index = np.where(arr == np.max(arr))
                    sub_row = index[0][0]
                    sub_col = index[1][0]
                    index = (r_start + sub_row) * W + c_start + sub_col
                    mask[n, c, i, j] = index

    return out, mask
C
chengduoZH 已提交
135 136 137 138


class TestMaxPoolWithIndex_Op(OpTest):
    def setUp(self):
C
fix bug  
chengduoZH 已提交
139
        self.init_test_case()
C
chengduoZH 已提交
140
        self.init_global()
141
        self.init_adaptive()
C
chengduoZH 已提交
142

C
chengduoZH 已提交
143
        input = np.random.random(self.shape).astype("float32")
C
chengduoZH 已提交
144
        output, mask = self.pool_forward_naive(input, self.ksize, self.strides,
145 146
                                               self.paddings, self.global_pool,
                                               self.adaptive)
C
fix bug  
chengduoZH 已提交
147
        output = output.astype("float32")
C
chengduoZH 已提交
148
        mask = mask.astype("int32")
C
chengduoZH 已提交
149 150 151 152 153

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
154
            'global_pooling': self.global_pool,
155
            'adaptive': self.adaptive,
C
chengduoZH 已提交
156 157 158
        }

        self.inputs = {'X': input}
C
chengduoZH 已提交
159
        self.outputs = {'Out': output, "Mask": mask}
C
chengduoZH 已提交
160 161 162 163 164 165 166

    def test_check_output(self):
        self.check_output()

    # def test_check_grad(self):
    #     self.check_grad(set(['X']), ['Out'], max_relative_error=0.07)

C
fix bug  
chengduoZH 已提交
167
    def init_test_case(self):
C
chengduoZH 已提交
168
        self.op_type = "max_pool3d_with_index"
C
chengduoZH 已提交
169 170 171 172 173 174
        self.pool_forward_naive = max_pool3D_forward_naive
        self.shape = [2, 3, 5, 5, 5]
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [1, 1, 1]

C
chengduoZH 已提交
175 176 177
    def init_global(self):
        self.global_pool = False

178 179 180
    def init_adaptive(self):
        self.adaptive = False

C
chengduoZH 已提交
181 182

class TestCase1(TestMaxPoolWithIndex_Op):
C
chengduoZH 已提交
183
    def init_global(self):
C
chengduoZH 已提交
184 185 186 187
        self.global_pool = True


class TestCase2(TestMaxPoolWithIndex_Op):
C
fix bug  
chengduoZH 已提交
188
    def init_test_case(self):
C
chengduoZH 已提交
189
        self.op_type = "max_pool3d_with_index"
C
chengduoZH 已提交
190 191 192 193 194 195
        self.pool_forward_naive = max_pool3D_forward_naive
        self.shape = [2, 3, 7, 7, 7]
        self.ksize = [3, 3, 3]
        self.strides = [2, 2, 2]
        self.paddings = [0, 0, 0]

C
chengduoZH 已提交
196
    def init_global(self):
C
chengduoZH 已提交
197
        self.global_pool = True
C
chengduoZH 已提交
198 199


C
chengduoZH 已提交
200 201 202
class TestCase3(TestCase2):
    def init_global(self):
        self.global_pool = False
C
chengduoZH 已提交
203 204


C
chengduoZH 已提交
205 206
#----------------max_pool2d_with_index----------------
class TestCase4(TestMaxPoolWithIndex_Op):
C
fix bug  
chengduoZH 已提交
207
    def init_test_case(self):
C
chengduoZH 已提交
208
        self.op_type = "max_pool2d_with_index"
C
chengduoZH 已提交
209 210 211 212 213 214
        self.pool_forward_naive = max_pool2D_forward_naive
        self.shape = [2, 3, 7, 7]
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 1]

C
chengduoZH 已提交
215 216
    def init_global(self):
        self.global_pool = True
C
chengduoZH 已提交
217

C
chengduoZH 已提交
218

C
chengduoZH 已提交
219
class TestCase5(TestCase4):
C
chengduoZH 已提交
220
    def init_global(self):
C
chengduoZH 已提交
221
        self.global_pool = False
C
chengduoZH 已提交
222 223 224 225


class TestCase6(TestMaxPoolWithIndex_Op):
    def init_test_case(self):
C
chengduoZH 已提交
226
        self.op_type = "max_pool2d_with_index"
C
chengduoZH 已提交
227 228 229 230 231 232
        self.pool_forward_naive = max_pool2D_forward_naive
        self.shape = [2, 3, 7, 7]
        self.ksize = [3, 3]
        self.strides = [2, 2]
        self.paddings = [0, 0]

C
chengduoZH 已提交
233
    def init_global(self):
C
chengduoZH 已提交
234
        self.global_pool = True
C
chengduoZH 已提交
235 236


C
chengduoZH 已提交
237 238 239
class TestCase7(TestCase6):
    def init_global(self):
        self.global_pool = False
C
chengduoZH 已提交
240 241


242 243 244 245 246 247 248 249 250 251
class TestCastAdaptive2d(TestCase6):
    def init_adaptive(self):
        self.adaptive = True


class TestCastAdaptive3d(TestMaxPoolWithIndex_Op):
    def init_adaptive(self):
        self.adaptive = True


C
chengduoZH 已提交
252 253
if __name__ == '__main__':
    unittest.main()