dropout_op.cc 8.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14

S
sneaxiy 已提交
15
#include <memory>
P
phlrain 已提交
16
#include <string>
17

H
hong 已提交
18
#include "paddle/fluid/framework/infershape_utils.h"
H
hong 已提交
19
#include "paddle/fluid/framework/op_registry.h"
H
hong 已提交
20
#include "paddle/phi/infermeta/binary.h"
X
Xinghai Sun 已提交
21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using framework::Tensor;

class DropoutOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

M
mapingshuo 已提交
31 32 33 34 35 36
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
37 38

  framework::OpKernelType GetKernelTypeForVar(
39 40
      const std::string& var_name,
      const Tensor& tensor,
41 42 43 44 45 46 47
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "Seed") {
      VLOG(10) << "var_name:" << var_name
               << " does not need to transform in dropout op";
      return expected_kernel_type;
    }

48 49
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
50
  }
X
Xinghai Sun 已提交
51 52 53 54
};

class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
55
  void Make() override {
X
Xinghai Sun 已提交
56
    AddInput("X", "The input of dropout op.");
M
mapingshuo 已提交
57 58 59
    AddInput("Seed",
             "The seed of dropout op, it has higher priority than the attr "
             "fix_seed and seed")
60 61
        .AsDispensable()
        .AsExtra();
X
Xinghai Sun 已提交
62
    AddOutput("Out", "The output of dropout op.");
63 64 65
    AddOutput("Mask", "The random sampled dropout mask.")
        .AsIntermediate()
        .AsExtra();
X
Xinghai Sun 已提交
66

K
Kexin Zhao 已提交
67
    AddAttr<float>("dropout_prob", "Probability of setting units to zero.")
C
chengduoZH 已提交
68 69
        .SetDefault(.5f)
        .AddCustomChecker([](const float& drop_p) {
70 71
          PADDLE_ENFORCE_EQ(drop_p >= 0.0f && drop_p <= 1.0f,
                            true,
72 73
                            platform::errors::InvalidArgument(
                                "'dropout_prob' must be between 0.0 and 1.0."));
74 75
        })
        .SupportTensor();
76 77 78 79
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
80 81 82 83 84 85
    AddAttr<bool>("fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
86 87
        .SetDefault(false)
        .AsExtra();
88
    AddAttr<int>("seed", "Dropout random seed.").SetDefault(0).AsExtra();
P
phlrain 已提交
89 90 91 92 93 94 95 96 97
    AddAttr<std::string>(
        "dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "There are two kinds of ways to implement dropout"
        "(the mask below is a tensor have the same shape with input"
        "the value of mask is 0 or 1, the ratio of 0 is dropout_prob)"
        "1. downgrade_in_infer(default), downgrade the outcome at inference "
        "time"
        "   train: out = input * mask"
C
ceci3 已提交
98
        "   inference: out = input * (1.0 - dropout_prob)"
P
phlrain 已提交
99 100 101 102 103 104 105 106
        "2. upscale_in_train, upscale the outcome at training time, do nothing "
        "in inference"
        "   train: out = input * mask / ( 1.0 - dropout_prob )"
        "   inference: out = input"
        "   dropout op can be removed from the program. the program will be "
        "efficient")
        .SetDefault("downgrade_in_infer")
        .AddCustomChecker([](const std::string& type) {
107
          PADDLE_ENFORCE_EQ(
108 109
              type == "downgrade_in_infer" || type == "upscale_in_train",
              true,
110 111 112
              platform::errors::InvalidArgument(
                  "dropout_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
P
phlrain 已提交
113
        });
K
Kexin Zhao 已提交
114

115 116 117
    AddComment(R"DOC(
Dropout Operator.

K
Kexin Zhao 已提交
118
Dropout refers to randomly dropping out units in a nerual network. It is a
119 120
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
121
the given dropout probability) the outputs of some units to zero, while others
K
Kexin Zhao 已提交
122 123
are set equal to their corresponding inputs.

124
)DOC");
X
Xinghai Sun 已提交
125 126 127 128 129 130 131
  }
};

class DropoutOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

132
  void InferShape(framework::InferShapeContext* ctx) const override {
133
    OP_INOUT_CHECK(ctx->HasInput("Mask"), "Input", "Mask", "DropoutGrad");
134 135 136 137
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
                   "DropoutGrad");
Q
Qiao Longfei 已提交
138 139

    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
S
sneaxiy 已提交
140 141 142 143 144

    ctx->SetOutputDim(framework::GradVarName("X"), out_dims);
    ctx->ShareLoD(framework::GradVarName("Out"),
                  /*->*/ framework::GradVarName("X"));
  }
Z
Zeng Jinle 已提交
145 146 147 148

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
149 150 151
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
Z
Zeng Jinle 已提交
152
  }
S
sneaxiy 已提交
153 154
};

H
hong 已提交
155 156
template <typename T>
class DropoutGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
157
 public:
H
hong 已提交
158
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
159 160

 protected:
161
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
162
    op->SetType("dropout_grad");
H
hong 已提交
163 164 165 166
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Mask", this->Output("Mask"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
X
Xinghai Sun 已提交
167 168 169
  }
};

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
class DropoutNdOpMaker : public DropoutOpMaker {
 public:
  void Make() override {
    DropoutOpMaker::Make();
    AddAttr<std::vector<int>>("axis",
                              "(std::vector<int>). List of integers,"
                              " indicating the dimensions to be dropout_nd.")
        .SetDefault({});
  }
};

template <typename T>
class DropoutNdGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("dropout_nd_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Mask", this->Output("Mask"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

X
Xinghai Sun 已提交
196 197 198 199
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
200

201 202
DECLARE_INFER_SHAPE_FUNCTOR(dropout,
                            DropoutInferShapeFunctor,
H
hong 已提交
203
                            PD_INFER_META(phi::DropoutInferMeta));
204 205 206
REGISTER_OPERATOR(dropout,
                  ops::DropoutOp,
                  ops::DropoutOpMaker,
H
hong 已提交
207
                  ops::DropoutGradOpMaker<paddle::framework::OpDesc>,
H
hong 已提交
208 209
                  ops::DropoutGradOpMaker<paddle::imperative::OpBase>,
                  DropoutInferShapeFunctor);
210
REGISTER_OPERATOR(dropout_grad, ops::DropoutOpGrad);
211

212 213
DECLARE_INFER_SHAPE_FUNCTOR(dropout_nd,
                            DropoutNdInferShapeFunctor,
214
                            PD_INFER_META(phi::DropoutNdInferMeta));
215 216 217
REGISTER_OPERATOR(dropout_nd,
                  ops::DropoutOp,
                  ops::DropoutNdOpMaker,
218 219 220 221
                  ops::DropoutNdGradOpMaker<paddle::framework::OpDesc>,
                  ops::DropoutNdGradOpMaker<paddle::imperative::OpBase>,
                  DropoutNdInferShapeFunctor);
REGISTER_OPERATOR(dropout_nd_grad, ops::DropoutOpGrad);