sgd_op.h 5.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
19
#include "paddle/fluid/operators/jit/kernels.h"
Q
Qiao Longfei 已提交
20 21 22 23

namespace paddle {
namespace operators {

24
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
25
class SGDOpKernel : public framework::OpKernel<T> {
26 27 28 29 30 31 32
 public:
  void Compute(const framework::ExecutionContext &ctx) const override;
};

template <typename T>
class SGDOpKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
33
 public:
34 35 36 37 38 39 40 41 42 43 44 45
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");

    const auto *param_var = ctx.InputVar("Param");
    const auto *grad_var = ctx.InputVar("Grad");

    if (param_var->IsType<framework::LoDTensor>()) {
      const auto *param = ctx.Input<framework::Tensor>("Param");
      auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
      // Actually, all tensors are LoDTensor except SelectedRows.
      if (grad_var->IsType<framework::LoDTensor>()) {
        const auto *grad = ctx.Input<framework::Tensor>("Grad");
46 47 48 49 50 51 52 53 54 55 56
        auto sz = param_out->numel();
        PADDLE_ENFORCE_EQ(param->numel(), sz);
        PADDLE_ENFORCE_EQ(grad->numel(), sz);

        jit::sgd_attr_t attr(1, sz, 1, sz, 1);
        const T *lr = learning_rate->data<T>();
        const T *param_data = param->data<T>();
        const T *grad_data = grad->data<T>();
        int64_t rows_idx = 0;
        T *out_data = param_out->mutable_data<T>(ctx.GetPlace());

57 58 59
        auto sgd =
            jit::KernelFuncs<jit::SgdTuple<T>, platform::CPUPlace>::Cache().At(
                attr);
60
        sgd(lr, param_data, grad_data, &rows_idx, out_data, &attr);
61 62 63 64 65 66
      } else if (grad_var->IsType<framework::SelectedRows>()) {
        // TODO(qijun): In Sparse SGD operator, in-place update is enforced.
        // This manual optimization brings difficulty to track data dependency.
        // It's better to find a more elegant solution.
        PADDLE_ENFORCE_EQ(param, param_out);
        const auto *grad = ctx.Input<framework::SelectedRows>("Grad");
67
        auto &grad_rows = grad->rows();
68 69 70

        // for distributed training, a sparse var may be empty,
        // just skip updating.
71
        if (grad_rows.size() == 0) {
72 73 74 75
          return;
        }

        auto out_dims = param_out->dims();
76
        PADDLE_ENFORCE_EQ(grad->height(), out_dims[0]);
77
        auto &grad_value = grad->value();
78 79 80 81 82 83 84 85 86 87 88 89 90 91
        const T *param_data = param->data<T>();
        const T *grad_data = grad_value.data<T>();
        const T *lr = learning_rate->data<T>();
        const int64_t *rows_data = grad_rows.data();
        T *out_data = param_out->mutable_data<T>(ctx.GetPlace());

        jit::sgd_attr_t attr;
        attr.param_height = out_dims[0];
        attr.param_width = param_out->numel() / attr.param_height;
        attr.grad_height = grad_rows.size();  // note: it is not grad->height()
        attr.grad_width = grad_value.numel() / attr.grad_height;
        attr.selected_rows_size = grad_rows.size();
        PADDLE_ENFORCE_EQ(attr.grad_width, attr.param_width);

92 93 94
        auto sgd =
            jit::KernelFuncs<jit::SgdTuple<T>, platform::CPUPlace>::Cache().At(
                attr);
95
        sgd(lr, param_data, grad_data, rows_data, out_data, &attr);
96 97 98 99 100 101 102 103 104 105
      } else {
        PADDLE_THROW("Unsupported Variable Type of Grad");
      }
    } else if (param_var->IsType<framework::SelectedRows>()) {
      PADDLE_ENFORCE(grad_var->IsType<framework::SelectedRows>(),
                     "when param "
                     "is SelectedRows, gradient should also be SelectedRows");
      const auto &param = param_var->Get<framework::SelectedRows>();
      auto *param_out = ctx.Output<framework::SelectedRows>("ParamOut");
      const auto &grad = grad_var->Get<framework::SelectedRows>();
C
chengduoZH 已提交
106

107 108
      // for distributed training, a sparse var may be empty,
      // just skip updating.
109
      if (grad.rows().size() == 0) {
110 111 112
        return;
      }

Q
qiaolongfei 已提交
113 114
      auto param_row_width = param.value().dims()[1];
      auto grad_row_width = grad.value().dims()[1];
M
minqiyang 已提交
115 116 117 118
      VLOG(4) << " param rows: " << param.rows().size()
              << " param memory rows: " << param.value().dims()[0]
              << " grad rows: " << grad.rows().size()
              << " grad memory rows: " << grad.value().dims()[0];
119 120
      PADDLE_ENFORCE_EQ(param_row_width, grad_row_width,
                        "param_row should have the same size with grad_row");
C
chengduoZH 已提交
121

122 123 124 125
      const auto *lr = learning_rate->data<T>();
      const auto *grad_data = grad.value().data<T>();
      auto *out_data = param_out->mutable_value()->data<T>();
      for (size_t i = 0; i < grad.rows().size(); i++) {
126
        int64_t id_index = param_out->AutoGrownIndex(grad.rows()[i], false);
Y
update  
Yancey1989 已提交
127 128
        PADDLE_ENFORCE_GE(id_index, static_cast<int64_t>(0),
                          "id should be in the table");
129
        for (int64_t j = 0; j < grad_row_width; j++) {
130 131
          out_data[id_index * grad_row_width + j] -=
              lr[0] * grad_data[i * grad_row_width + j];
C
chengduoZH 已提交
132 133
        }
      }
Q
qijun 已提交
134
    } else {
135
      PADDLE_THROW("Unsupported Variable Type of Parameter");
Q
qijun 已提交
136
    }
Q
Qiao Longfei 已提交
137 138 139 140
  }
};
}  // namespace operators
}  // namespace paddle