sgd_op.h 5.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
19
#include "paddle/fluid/operators/jit/kernels.h"
Q
Qiao Longfei 已提交
20 21 22 23

namespace paddle {
namespace operators {

C
chengduoZH 已提交
24
template <typename T>
Y
Yu Yang 已提交
25
class SGDOpKernel : public framework::OpKernel<T> {
26
 public:
27 28 29 30 31 32 33 34 35 36 37 38
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");

    const auto *param_var = ctx.InputVar("Param");
    const auto *grad_var = ctx.InputVar("Grad");

    if (param_var->IsType<framework::LoDTensor>()) {
      const auto *param = ctx.Input<framework::Tensor>("Param");
      auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
      // Actually, all tensors are LoDTensor except SelectedRows.
      if (grad_var->IsType<framework::LoDTensor>()) {
        const auto *grad = ctx.Input<framework::Tensor>("Grad");
39 40 41 42 43 44 45 46 47 48 49
        auto sz = param_out->numel();
        PADDLE_ENFORCE_EQ(param->numel(), sz);
        PADDLE_ENFORCE_EQ(grad->numel(), sz);

        jit::sgd_attr_t attr(1, sz, 1, sz, 1);
        const T *lr = learning_rate->data<T>();
        const T *param_data = param->data<T>();
        const T *grad_data = grad->data<T>();
        int64_t rows_idx = 0;
        T *out_data = param_out->mutable_data<T>(ctx.GetPlace());

50 51 52
        auto sgd = jit::KernelFuncs<jit::kSgd, jit::SgdTuples<T>,
                                    platform::CPUPlace>::Cache()
                       .At(attr);
53
        sgd(lr, param_data, grad_data, &rows_idx, out_data, &attr);
54 55 56 57 58 59
      } else if (grad_var->IsType<framework::SelectedRows>()) {
        // TODO(qijun): In Sparse SGD operator, in-place update is enforced.
        // This manual optimization brings difficulty to track data dependency.
        // It's better to find a more elegant solution.
        PADDLE_ENFORCE_EQ(param, param_out);
        const auto *grad = ctx.Input<framework::SelectedRows>("Grad");
60
        auto &grad_rows = grad->rows();
61 62 63

        // for distributed training, a sparse var may be empty,
        // just skip updating.
64
        if (grad_rows.size() == 0) {
65 66 67 68
          return;
        }

        auto out_dims = param_out->dims();
69
        PADDLE_ENFORCE_EQ(grad->height(), out_dims[0]);
70
        auto &grad_value = grad->value();
71 72 73 74 75 76 77 78 79 80 81 82 83 84
        const T *param_data = param->data<T>();
        const T *grad_data = grad_value.data<T>();
        const T *lr = learning_rate->data<T>();
        const int64_t *rows_data = grad_rows.data();
        T *out_data = param_out->mutable_data<T>(ctx.GetPlace());

        jit::sgd_attr_t attr;
        attr.param_height = out_dims[0];
        attr.param_width = param_out->numel() / attr.param_height;
        attr.grad_height = grad_rows.size();  // note: it is not grad->height()
        attr.grad_width = grad_value.numel() / attr.grad_height;
        attr.selected_rows_size = grad_rows.size();
        PADDLE_ENFORCE_EQ(attr.grad_width, attr.param_width);

85 86 87
        auto sgd = jit::KernelFuncs<jit::kSgd, jit::SgdTuples<T>,
                                    platform::CPUPlace>::Cache()
                       .At(attr);
88
        sgd(lr, param_data, grad_data, rows_data, out_data, &attr);
89 90 91 92 93 94 95 96 97 98
      } else {
        PADDLE_THROW("Unsupported Variable Type of Grad");
      }
    } else if (param_var->IsType<framework::SelectedRows>()) {
      PADDLE_ENFORCE(grad_var->IsType<framework::SelectedRows>(),
                     "when param "
                     "is SelectedRows, gradient should also be SelectedRows");
      const auto &param = param_var->Get<framework::SelectedRows>();
      auto *param_out = ctx.Output<framework::SelectedRows>("ParamOut");
      const auto &grad = grad_var->Get<framework::SelectedRows>();
C
chengduoZH 已提交
99

100 101
      // for distributed training, a sparse var may be empty,
      // just skip updating.
102
      if (grad.rows().size() == 0) {
103 104 105
        return;
      }

Q
qiaolongfei 已提交
106 107
      auto param_row_width = param.value().dims()[1];
      auto grad_row_width = grad.value().dims()[1];
M
minqiyang 已提交
108 109 110 111
      VLOG(4) << " param rows: " << param.rows().size()
              << " param memory rows: " << param.value().dims()[0]
              << " grad rows: " << grad.rows().size()
              << " grad memory rows: " << grad.value().dims()[0];
112 113
      PADDLE_ENFORCE_EQ(param_row_width, grad_row_width,
                        "param_row should have the same size with grad_row");
C
chengduoZH 已提交
114

115 116 117 118
      const auto *lr = learning_rate->data<T>();
      const auto *grad_data = grad.value().data<T>();
      auto *out_data = param_out->mutable_value()->data<T>();
      for (size_t i = 0; i < grad.rows().size(); i++) {
119
        int64_t id_index = param_out->AutoGrownIndex(grad.rows()[i], false);
Y
update  
Yancey1989 已提交
120 121
        PADDLE_ENFORCE_GE(id_index, static_cast<int64_t>(0),
                          "id should be in the table");
122
        for (int64_t j = 0; j < grad_row_width; j++) {
123 124
          out_data[id_index * grad_row_width + j] -=
              lr[0] * grad_data[i * grad_row_width + j];
C
chengduoZH 已提交
125 126
        }
      }
Q
qijun 已提交
127
    } else {
128
      PADDLE_THROW("Unsupported Variable Type of Parameter");
Q
qijun 已提交
129
    }
Q
Qiao Longfei 已提交
130 131 132 133
  }
};
}  // namespace operators
}  // namespace paddle