functional.py 21.1 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import division

L
LielinJiang 已提交
17
import sys
L
LielinJiang 已提交
18 19
import math
import numbers
20 21
import warnings
import collections
L
LielinJiang 已提交
22

23 24 25 26
import numpy as np
from PIL import Image
from numpy import sin, cos, tan
import paddle
L
LielinJiang 已提交
27

L
LielinJiang 已提交
28 29 30 31 32 33 34
if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

35 36 37
from . import functional_pil as F_pil
from . import functional_cv2 as F_cv2
from . import functional_tensor as F_t
L
LielinJiang 已提交
38

39 40 41
__all__ = [
    'to_tensor', 'hflip', 'vflip', 'resize', 'pad', 'rotate', 'to_grayscale',
    'crop', 'center_crop', 'adjust_brightness', 'adjust_contrast', 'adjust_hue',
L
LielinJiang 已提交
42
    'normalize'
43
]
L
LielinJiang 已提交
44

L
LielinJiang 已提交
45

46 47
def _is_pil_image(img):
    return isinstance(img, Image.Image)
L
LielinJiang 已提交
48 49


50 51
def _is_tensor_image(img):
    return isinstance(img, paddle.Tensor)
L
LielinJiang 已提交
52

53 54 55 56 57 58 59 60 61

def _is_numpy_image(img):
    return isinstance(img, np.ndarray) and (img.ndim in {2, 3})


def to_tensor(pic, data_format='CHW'):
    """Converts a ``PIL.Image`` or ``numpy.ndarray`` to paddle.Tensor.

    See ``ToTensor`` for more details.
L
LielinJiang 已提交
62 63

    Args:
64
        pic (PIL.Image|np.ndarray): Image to be converted to tensor.
L
LielinJiang 已提交
65
        data_format (str, optional): Data format of output tensor, should be 'HWC' or 
66 67 68
            'CHW'. Default: 'CHW'.

    Returns:
L
LielinJiang 已提交
69
        Tensor: Converted image. Data type is same as input img.
L
LielinJiang 已提交
70 71 72 73 74

    Examples:
        .. code-block:: python

            import numpy as np
75
            from PIL import Image
76
            from paddle.vision.transforms import functional as F
L
LielinJiang 已提交
77

78
            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
L
LielinJiang 已提交
79

80
            fake_img = Image.fromarray(fake_img)
L
LielinJiang 已提交
81

82 83
            tensor = F.to_tensor(fake_img)
            print(tensor.shape)
L
LielinJiang 已提交
84 85

    """
86 87 88 89 90 91 92 93
    if not (_is_pil_image(pic) or _is_numpy_image(pic)):
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(
            type(pic)))

    if _is_pil_image(pic):
        return F_pil.to_tensor(pic, data_format)
    else:
        return F_cv2.to_tensor(pic, data_format)
L
LielinJiang 已提交
94 95


96
def resize(img, size, interpolation='bilinear'):
L
LielinJiang 已提交
97
    """
98
    Resizes the image to given size
L
LielinJiang 已提交
99 100

    Args:
101
        input (PIL.Image|np.ndarray): Image to be resized.
L
LielinJiang 已提交
102
        size (int|list|tuple): Target size of input data, with (height, width) shape.
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        interpolation (int|str, optional): Interpolation method. when use pil backend, 
            support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4

    Returns:
        PIL.Image or np.array: Resized image.
L
LielinJiang 已提交
120 121 122 123 124

    Examples:
        .. code-block:: python

            import numpy as np
125
            from PIL import Image
126
            from paddle.vision.transforms import functional as F
L
LielinJiang 已提交
127

128
            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
L
LielinJiang 已提交
129

130
            fake_img = Image.fromarray(fake_img)
L
LielinJiang 已提交
131

132 133 134 135 136
            converted_img = F.resize(fake_img, 224)
            print(converted_img.size)

            converted_img = F.resize(fake_img, (200, 150))
            print(converted_img.size)
L
LielinJiang 已提交
137
    """
138 139 140 141 142 143 144
    if not (_is_pil_image(img) or _is_numpy_image(img)):
        raise TypeError(
            'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.resize(img, size, interpolation)
L
LielinJiang 已提交
145
    else:
146
        return F_cv2.resize(img, size, interpolation)
L
LielinJiang 已提交
147 148


149 150 151
def pad(img, padding, fill=0, padding_mode='constant'):
    """
    Pads the given PIL.Image or numpy.array on all sides with specified padding mode and fill value.
L
LielinJiang 已提交
152 153

    Args:
154 155
        img (PIL.Image|np.array): Image to be padded.
        padding (int|list|tuple): Padding on each border. If a single int is provided this
L
LielinJiang 已提交
156 157 158 159
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively.
160
        fill (float, optional): Pixel fill value for constant fill. If a tuple of
L
LielinJiang 已提交
161
            length 3, it is used to fill R, G, B channels respectively.
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
            This value is only used when the padding_mode is constant. Default: 0. 
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]
L
LielinJiang 已提交
178 179

    Returns:
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
        PIL.Image or np.array: Padded image.

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            padded_img = F.pad(fake_img, padding=1)
            print(padded_img.size)

            padded_img = F.pad(fake_img, padding=(2, 1))
            print(padded_img.size)
    """
    if not (_is_pil_image(img) or _is_numpy_image(img)):
        raise TypeError(
            'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.pad(img, padding, fill, padding_mode)
    else:
        return F_cv2.pad(img, padding, fill, padding_mode)


def crop(img, top, left, height, width):
    """Crops the given Image.

    Args:
        img (PIL.Image|np.array): Image to be cropped. (0,0) denotes the top left 
            corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.

    Returns:
        PIL.Image or np.array: Cropped image.
L
LielinJiang 已提交
223 224 225 226 227

    Examples:
        .. code-block:: python

            import numpy as np
228 229
            from PIL import Image
            from paddle.vision.transforms import functional as F
L
LielinJiang 已提交
230

231
            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
L
LielinJiang 已提交
232

233
            fake_img = Image.fromarray(fake_img)
L
LielinJiang 已提交
234

235 236
            cropped_img = F.crop(fake_img, 56, 150, 200, 100)
            print(cropped_img.size)
L
LielinJiang 已提交
237 238

    """
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    if not (_is_pil_image(img) or _is_numpy_image(img)):
        raise TypeError(
            'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.crop(img, top, left, height, width)
    else:
        return F_cv2.crop(img, top, left, height, width)


def center_crop(img, output_size):
    """Crops the given Image and resize it to desired size.

        Args:
            img (PIL.Image|np.array): Image to be cropped. (0,0) denotes the top left corner of the image.
            output_size (sequence or int): (height, width) of the crop box. If int,
                it is used for both directions
        
        Returns:
            PIL.Image or np.array: Cropped image.
L
LielinJiang 已提交
260

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
        Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            cropped_img = F.center_crop(fake_img, (150, 100))
            print(cropped_img.size)
        """
    if not (_is_pil_image(img) or _is_numpy_image(img)):
        raise TypeError(
            'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.center_crop(img, output_size)
    else:
        return F_cv2.center_crop(img, output_size)


L
LielinJiang 已提交
286
def hflip(img):
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
    """Horizontally flips the given Image or np.array.

    Args:
        img (PIL.Image|np.array): Image to be flipped.

    Returns:
        PIL.Image or np.array:  Horizontall flipped image.

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            flpped_img = F.hflip(fake_img)
            print(flpped_img.size)

    """
    if not (_is_pil_image(img) or _is_numpy_image(img)):
        raise TypeError(
            'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.hflip(img)
    else:
        return F_cv2.hflip(img)


def vflip(img):
    """Vertically flips the given Image or np.array.

    Args:
        img (PIL.Image|np.array): Image to be flipped.

    Returns:
        PIL.Image or np.array:  Vertically flipped image.

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            flpped_img = F.vflip(fake_img)
            print(flpped_img.size)

    """
    if not (_is_pil_image(img) or _is_numpy_image(img)):
        raise TypeError(
            'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.vflip(img)
    else:
        return F_cv2.vflip(img)


def adjust_brightness(img, brightness_factor):
    """Adjusts brightness of an Image.

    Args:
        img (PIL.Image|np.array): Image to be adjusted.
        brightness_factor (float): How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
        PIL.Image or np.array: Brightness adjusted image.

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            converted_img = F.adjust_brightness(fake_img, 0.4)
            print(converted_img.size)
    """
    if not (_is_pil_image(img) or _is_numpy_image(img)):
        raise TypeError(
            'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.adjust_brightness(img, brightness_factor)
    else:
        return F_cv2.adjust_brightness(img, brightness_factor)


def adjust_contrast(img, contrast_factor):
    """Adjusts contrast of an Image.

    Args:
        img (PIL.Image|np.array): Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
        PIL.Image or np.array: Contrast adjusted image.

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            converted_img = F.adjust_contrast(fake_img, 0.4)
            print(converted_img.size)
    """
    if not (_is_pil_image(img) or _is_numpy_image(img)):
        raise TypeError(
            'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.adjust_contrast(img, contrast_factor)
    else:
        return F_cv2.adjust_contrast(img, contrast_factor)


def adjust_saturation(img, saturation_factor):
    """Adjusts color saturation of an image.

    Args:
        img (PIL.Image|np.array): Image to be adjusted.
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
        PIL.Image or np.array: Saturation adjusted image.

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            converted_img = F.adjust_saturation(fake_img, 0.4)
            print(converted_img.size)

    """
    if not (_is_pil_image(img) or _is_numpy_image(img)):
        raise TypeError(
            'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.adjust_saturation(img, saturation_factor)
    else:
        return F_cv2.adjust_saturation(img, saturation_factor)


def adjust_hue(img, hue_factor):
    """Adjusts hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

    Args:
        img (PIL.Image|np.array): Image to be adjusted.
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
        PIL.Image or np.array: Hue adjusted image.

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            converted_img = F.adjust_hue(fake_img, 0.4)
            print(converted_img.size)

    """
    if not (_is_pil_image(img) or _is_numpy_image(img)):
        raise TypeError(
            'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.adjust_hue(img, hue_factor)
    else:
        return F_cv2.adjust_hue(img, hue_factor)


515 516 517 518 519 520
def rotate(img,
           angle,
           interpolation="nearest",
           expand=False,
           center=None,
           fill=0):
L
LielinJiang 已提交
521 522
    """Rotates the image by angle.

523

L
LielinJiang 已提交
524
    Args:
525 526
        img (PIL.Image|np.array): Image to be rotated.
        angle (float or int): In degrees degrees counter clockwise order.
527
        interpolation (str, optional): Interpolation method. If omitted, or if the 
528 529 530 531 532 533 534 535 536 537
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST 
            according the backend. when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "bicubic": cv2.INTER_CUBIC
        expand (bool, optional): Optional expansion flag.
L
LielinJiang 已提交
538 539 540
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
541
        center (2-list|2-tuple, optional): Optional center of rotation.
L
LielinJiang 已提交
542 543
            Origin is the upper left corner.
            Default is the center of the image.
544
        fill (3-list|3-tuple or int): RGB pixel fill value for area outside the rotated image.
545 546
            If int, it is used for all channels respectively.

L
LielinJiang 已提交
547 548

    Returns:
549
        PIL.Image or np.array: Rotated image.
L
LielinJiang 已提交
550 551 552 553 554

    Examples:
        .. code-block:: python

            import numpy as np
555 556 557 558
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
L
LielinJiang 已提交
559

560
            fake_img = Image.fromarray(fake_img)
L
LielinJiang 已提交
561

562 563
            rotated_img = F.rotate(fake_img, 90)
            print(rotated_img.size)
L
LielinJiang 已提交
564 565

    """
566 567 568 569 570
    if not (_is_pil_image(img) or _is_numpy_image(img)):
        raise TypeError(
            'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
            format(type(img)))

571 572 573 574 575
    if isinstance(center, list):
        center = tuple(center)
    if isinstance(fill, list):
        fill = tuple(fill)

576
    if _is_pil_image(img):
577
        return F_pil.rotate(img, angle, interpolation, expand, center, fill)
L
LielinJiang 已提交
578
    else:
579
        return F_cv2.rotate(img, angle, interpolation, expand, center, fill)
L
LielinJiang 已提交
580 581 582 583 584 585


def to_grayscale(img, num_output_channels=1):
    """Converts image to grayscale version of image.

    Args:
586
        img (PIL.Image|np.array): Image to be converted to grayscale.
L
LielinJiang 已提交
587 588

    Returns:
589 590 591 592
        PIL.Image or np.array: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
L
LielinJiang 已提交
593 594
    
    Examples:
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            gray_img = F.to_grayscale(fake_img)
            print(gray_img.size)

    """
    if not (_is_pil_image(img) or _is_numpy_image(img)):
        raise TypeError(
            'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.to_grayscale(img, num_output_channels)
    else:
        return F_cv2.to_grayscale(img, num_output_channels)


def normalize(img, mean, std, data_format='CHW', to_rgb=False):
    """Normalizes a tensor or image with mean and standard deviation.

    Args:
        img (PIL.Image|np.array|paddle.Tensor): input data to be normalized.
        mean (list|tuple): Sequence of means for each channel.
        std (list|tuple): Sequence of standard deviations for each channel.
        data_format (str, optional): Data format of input img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.
        to_rgb (bool, optional): Whether to convert to rgb. If input is tensor, 
            this option will be igored. Default: False.

    Returns:
L
LielinJiang 已提交
633
        np.ndarray or Tensor: Normalized mage. Data format is same as input img.
L
LielinJiang 已提交
634
    
635
    Examples:
L
LielinJiang 已提交
636 637 638
        .. code-block:: python

            import numpy as np
639 640 641 642 643 644
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)
L
LielinJiang 已提交
645

646 647
            mean = [127.5, 127.5, 127.5]
            std = [127.5, 127.5, 127.5]
L
LielinJiang 已提交
648

649 650
            normalized_img = F.normalize(fake_img, mean, std, data_format='HWC')
            print(normalized_img.max(), normalized_img.min())
L
LielinJiang 已提交
651 652 653

    """

654 655
    if _is_tensor_image(img):
        return F_t.normalize(img, mean, std, data_format)
L
LielinJiang 已提交
656
    else:
657 658
        if _is_pil_image(img):
            img = np.array(img).astype(np.float32)
L
LielinJiang 已提交
659

660
        return F_cv2.normalize(img, mean, std, data_format, to_rgb)