test_dropout_op.py 44.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16

17
import numpy as np
18 19
from op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci

20
import paddle
21
import paddle.fluid as fluid
22 23
import paddle.fluid.core as core
import paddle.static as static
24
from paddle import _C_ops
25 26
from paddle.fluid import Program, program_guard
from paddle.fluid.framework import _enable_legacy_dygraph, _test_eager_guard
H
hong 已提交
27

28

29
class TestDropoutOp(OpTest):
30
    def setUp(self):
31
        self.op_type = "dropout"
32
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
33
        self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
Y
Yu Yang 已提交
34 35
        self.outputs = {
            'Out': self.inputs['X'],
36
            'Mask': np.ones((32, 64)).astype('uint8'),
Y
Yu Yang 已提交
37
        }
38

39 40 41 42
    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
43
        self.check_grad(['X'], 'Out')
44 45


46 47 48
class TestDropoutOpInput1d(OpTest):
    def setUp(self):
        self.op_type = "dropout"
49
        self.inputs = {'X': np.random.random((2000,)).astype("float32")}
50 51 52
        self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
        self.outputs = {
            'Out': self.inputs['X'],
53
            'Mask': np.ones((2000)).astype('uint8'),
54 55 56 57 58 59 60 61 62
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out')


63
class TestDropoutOp2(TestDropoutOp):
64
    def setUp(self):
65
        self.op_type = "dropout"
66
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
67
        self.attrs = {'dropout_prob': 1.0, 'fix_seed': True, 'is_test': False}
Y
Yu Yang 已提交
68 69
        self.outputs = {
            'Out': np.zeros((32, 64)).astype('float32'),
70
            'Mask': np.zeros((32, 64)).astype('uint8'),
Y
Yu Yang 已提交
71
        }
72 73


74
class TestDropoutOp3(TestDropoutOp):
75
    def setUp(self):
76 77
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 2)).astype("float32")}
78
        self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
Y
Yu Yang 已提交
79 80
        self.outputs = {
            'Out': self.inputs['X'],
81
            'Mask': np.ones((32, 64, 2)).astype('uint8'),
Y
Yu Yang 已提交
82
        }
83 84


85
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
86 87 88 89
class TestDropoutOp4(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
90
        self.attrs = {'dropout_prob': 0.35, 'fix_seed': True, 'is_test': True}
91 92 93
        self.outputs = {
            'Out': self.inputs['X'] * (1.0 - self.attrs['dropout_prob'])
        }
94 95 96 97 98

    def test_check_output(self):
        self.check_output()


99
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
100 101 102 103
class TestDropoutOp5(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 3)).astype("float32")}
104
        self.attrs = {'dropout_prob': 0.75, 'is_test': True}
105 106 107
        self.outputs = {
            'Out': self.inputs['X'] * (1.0 - self.attrs['dropout_prob'])
        }
108 109

    def test_check_output(self):
P
phlrain 已提交
110 111 112 113 114 115 116 117 118 119 120
        self.check_output()


class TestDropoutOp6(TestDropoutOp):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
        self.attrs = {
            'dropout_prob': 1.0,
            'fix_seed': True,
            'is_test': False,
121
            'dropout_implementation': 'upscale_in_train',
P
phlrain 已提交
122 123 124
        }
        self.outputs = {
            'Out': np.zeros((32, 64)).astype('float32'),
125
            'Mask': np.zeros((32, 64)).astype('uint8'),
P
phlrain 已提交
126 127 128 129 130 131 132 133 134 135 136
        }


class TestDropoutOp7(TestDropoutOp):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 2)).astype("float32")}
        self.attrs = {
            'dropout_prob': 0.0,
            'fix_seed': True,
            'is_test': False,
137
            'dropout_implementation': 'upscale_in_train',
P
phlrain 已提交
138 139 140
        }
        self.outputs = {
            'Out': self.inputs['X'],
141
            'Mask': np.ones((32, 64, 2)).astype('uint8'),
P
phlrain 已提交
142 143 144
        }


145
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
P
phlrain 已提交
146 147 148 149 150 151 152 153
class TestDropoutOp8(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
        self.attrs = {
            'dropout_prob': 0.35,
            'fix_seed': True,
            'is_test': True,
154
            'dropout_implementation': 'upscale_in_train',
P
phlrain 已提交
155 156 157 158 159 160 161
        }
        self.outputs = {'Out': self.inputs['X']}

    def test_check_output(self):
        self.check_output()


162
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
P
phlrain 已提交
163 164 165 166 167 168 169
class TestDropoutOp9(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 3)).astype("float32")}
        self.attrs = {
            'dropout_prob': 0.75,
            'is_test': True,
170
            'dropout_implementation': 'upscale_in_train',
P
phlrain 已提交
171 172 173 174
        }
        self.outputs = {'Out': self.inputs['X']}

    def test_check_output(self):
175 176 177
        self.check_output()


M
mapingshuo 已提交
178 179 180 181 182
class TestDropoutOpWithSeed(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {
            "X": np.random.random((32, 64)).astype("float32"),
183
            "Seed": np.asarray([125], dtype="int32"),
184 185 186
        }
        self.attrs = {
            'dropout_prob': 0.0,
M
mapingshuo 已提交
187 188 189
        }
        self.outputs = {
            'Out': self.inputs['X'],
190
            'Mask': np.ones((32, 64)).astype('uint8'),
M
mapingshuo 已提交
191 192 193 194 195 196 197 198 199
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out', max_relative_error=0.05)


200 201 202 203
@unittest.skipIf(
    not core.is_compiled_with_cuda() or not core.op_support_gpu("dropout"),
    "core is not compiled with CUDA or core is not support dropout",
)
204
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
K
Kexin Zhao 已提交
205
class TestFP16DropoutOp(OpTest):
K
Kexin Zhao 已提交
206 207
    def setUp(self):
        self.op_type = "dropout"
K
Kexin Zhao 已提交
208 209 210 211
        self.init_test_case()

        x = np.random.random(self.input_size).astype("float16")
        out = x * (1.0 - self.prob)
K
Kexin Zhao 已提交
212
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
K
Kexin Zhao 已提交
213 214 215
        self.attrs = {
            'dropout_prob': self.prob,
            'fix_seed': self.fix_seed,
216
            'is_test': True,
K
Kexin Zhao 已提交
217
        }
218
        self.outputs = {'Out': out}
K
Kexin Zhao 已提交
219

K
Kexin Zhao 已提交
220 221 222 223 224
    def init_test_case(self):
        self.input_size = [32, 64]
        self.prob = 0.35
        self.fix_seed = True

K
Kexin Zhao 已提交
225
    def test_check_output(self):
226
        self.check_output_with_place(core.CUDAPlace(0), atol=1e-3)
K
Kexin Zhao 已提交
227 228


229 230 231 232
@unittest.skipIf(
    not core.is_compiled_with_cuda() or not core.op_support_gpu("dropout"),
    "core is not compiled with CUDA or core is not support dropout",
)
233
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
K
Kexin Zhao 已提交
234 235 236 237 238
class TestFP16DropoutOp2(TestFP16DropoutOp):
    def init_test_case(self):
        self.input_size = [32, 64, 3]
        self.prob = 0.75
        self.fix_seed = False
K
Kexin Zhao 已提交
239 240


241 242 243 244 245 246 247 248 249
class TestBF16DropoutOp(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.dtype = np.uint16

        x = np.random.random((32, 64)).astype("float32")
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {'dropout_prob': 1.0, 'fix_seed': True, 'is_test': False}
        self.outputs = {
250 251 252 253
            'Out': convert_float_to_uint16(
                np.zeros((32, 64)).astype('float32')
            ),
            'Mask': np.zeros((32, 64)).astype('uint8'),
254 255 256 257 258 259 260 261 262
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out')


263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
class TestDropoutOpWithSeedOnCPUPlace(unittest.TestCase):
    def test_seed_cpu_place(self):
        paddle.enable_static()
        main_program = Program()
        with program_guard(main_program):
            seed_input_name = "tensor@SeedInput"
            x_var_name = "tensor@X"
            x_out_var = "tensor@XOut"

            mask_var_name = "tensor@Mask"
            seed_input_var = main_program.global_block().create_var(
                name=seed_input_name,
                shape=[1],
                dtype='int32',
                persistable=False,
278 279
                stop_gradient=True,
            )
280 281 282 283 284
            x_out_var = main_program.global_block().create_var(
                name=x_out_var,
                shape=[40, 40],
                dtype='float32',
                persistable=False,
285 286 287 288 289 290 291 292 293
                stop_gradient=True,
            )
            x_var = main_program.global_block().create_var(
                name=x_var_name,
                shape=[40, 40],
                dtype='float32',
                persistable=False,
                stop_gradient=True,
            )
294 295 296 297 298
            mask_var = main_program.global_block().create_var(
                name=mask_var_name,
                shape=[1],
                dtype='int',
                persistable=False,
299 300 301 302 303 304 305 306 307 308 309 310 311
                stop_gradient=True,
            )

            main_program.global_block().append_op(
                type="fill_constant",
                outputs={"Out": x_var_name},
                attrs={
                    "shape": [40, 40],
                    "dtype": x_var.dtype,
                    "value": 1.0,
                    "place_type": 0,
                },
            )
312 313 314 315
            main_program.global_block().append_op(
                type='seed',
                inputs={},
                outputs={'Out': seed_input_var},
316 317 318 319 320 321 322 323
                attrs={'seed': 1, 'force_cpu': True},
            )
            main_program.global_block().append_op(
                type='dropout',
                inputs={'X': x_var, 'Seed': seed_input_var},
                attrs={'dropout_prob': 0.0},
                outputs={'Out': x_out_var, 'Mask': mask_var},
            )
324 325 326 327 328 329 330
            place = fluid.CPUPlace()
            if core.is_compiled_with_cuda():
                place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            x_out, mask_out = exe.run(
                main_program,
                feed={},
331 332
                fetch_list=[x_out_var.name, mask_var.name],
            )
333
            x_in_np = np.ones([40, 40]).astype("float32")
334
            np.testing.assert_allclose(x_out, x_in_np, rtol=1e-05)
335 336


337
class TestDropoutOpError(unittest.TestCase):
338 339 340 341 342
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of dropout must be Variable.
343 344 345
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()
                )
346 347 348 349 350 351 352
                fluid.layers.dropout(x1, dropout_prob=0.5)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                # the input dtype of dropout must be float16 or float32 or float64
                # float16 only can be set on GPU place
353 354 355
                x2 = fluid.layers.data(
                    name='x2', shape=[3, 4, 5, 6], dtype="int32"
                )
356 357 358 359 360
                fluid.layers.dropout(x2, dropout_prob=0.5)

            self.assertRaises(TypeError, test_dtype)


361 362 363 364 365 366 367 368 369
class TestDropoutFAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
370
            input = fluid.data(name="input", shape=[-1, -1], dtype="float32")
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
            res1 = paddle.nn.functional.dropout(x=input, p=0.0, training=False)
            res2 = paddle.nn.functional.dropout(
                x=input, p=0.0, axis=0, training=True, mode='upscale_in_train'
            )
            res3 = paddle.nn.functional.dropout(
                x=input, p=0.0, axis=0, training=True, mode='downscale_in_infer'
            )
            res4 = paddle.nn.functional.dropout(
                x=input, p=0.0, axis=0, training=False, mode='upscale_in_train'
            )
            res5 = paddle.nn.functional.dropout(
                x=input,
                p=0.0,
                axis=0,
                training=False,
                mode='downscale_in_infer',
            )
            res6 = paddle.nn.functional.dropout(
                x=input,
                p=0.0,
                axis=[0, 1],
                training=True,
                mode='upscale_in_train',
            )
            res7 = paddle.nn.functional.dropout(
                x=input,
                p=0.0,
                axis=[0, 1],
                training=True,
                mode='downscale_in_infer',
            )
            res8 = paddle.nn.functional.dropout(
                x=input,
                p=0.0,
                axis=[0, 1],
                training=False,
                mode='upscale_in_train',
            )
            res9 = paddle.nn.functional.dropout(
                x=input,
                p=0.0,
                axis=[0, 1],
                training=False,
                mode='downscale_in_infer',
            )
            res10 = paddle.nn.functional.dropout(x=input, p=1.0, training=True)
            res11 = paddle.fluid.layers.dropout(x=input, dropout_prob=0.0)
            res12 = paddle.nn.functional.dropout(
                x=input,
                p=0.0,
                axis=(0, 1),
                training=False,
                mode='upscale_in_train',
            )

            res13 = paddle.nn.functional.dropout(
                x=input, p=0.7, axis=1, training=True, mode='upscale_in_train'
            )
429 430

            in_np = np.ones([40, 40]).astype("float32")
431 432 433 434
            res_np = in_np
            res_np2 = np.zeros_like(in_np)

            exe = fluid.Executor(place)
435
            res_list = [
436 437 438 439 440 441 442 443 444 445 446
                res1,
                res2,
                res3,
                res4,
                res5,
                res6,
                res7,
                res8,
                res9,
                res11,
                res12,
447
            ]
448
            for res in res_list:
449 450 451 452 453
                fetches = exe.run(
                    fluid.default_main_program(),
                    feed={"input": in_np},
                    fetch_list=[res],
                )
454
                np.testing.assert_allclose(fetches[0], res_np, rtol=1e-05)
455 456 457 458 459
            fetches2 = exe.run(
                fluid.default_main_program(),
                feed={"input": in_np},
                fetch_list=[res10],
            )
460
            np.testing.assert_allclose(fetches2[0], res_np2, rtol=1e-05)
461 462 463 464 465
            fetches3 = exe.run(
                fluid.default_main_program(),
                feed={"input": in_np},
                fetch_list=[res13],
            )
466 467 468 469 470 471 472 473 474 475 476 477 478

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([40, 40]).astype("float32")
                res_np = in_np
                res_np2 = np.zeros_like(in_np)
                input = fluid.dygraph.to_variable(in_np)

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
                res1 = paddle.nn.functional.dropout(
                    x=input, p=0.0, training=False
                )
                res2 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.0,
                    axis=0,
                    training=True,
                    mode='upscale_in_train',
                )
                res3 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.0,
                    axis=0,
                    training=True,
                    mode='downscale_in_infer',
                )
                res4 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.0,
                    axis=0,
                    training=False,
                    mode='upscale_in_train',
                )
                res5 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.0,
                    axis=0,
                    training=False,
                    mode='downscale_in_infer',
                )
                res6 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.0,
                    axis=[0, 1],
                    training=True,
                    mode='upscale_in_train',
                )
                res7 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.0,
                    axis=[0, 1],
                    training=True,
                    mode='downscale_in_infer',
                )
                res8 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.0,
                    axis=[0, 1],
                    training=False,
                    mode='upscale_in_train',
                )
                res9 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.0,
                    axis=[0, 1],
                    training=False,
                    mode='downscale_in_infer',
                )
                res10 = paddle.nn.functional.dropout(
                    x=input, p=1.0, training=True
                )
                dropout = paddle.fluid.dygraph.Dropout(
                    p=0,
                )
544
                res11 = dropout(input)
545 546 547 548 549 550 551 552 553 554 555 556 557 558
                res12 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.0,
                    axis=(0, 1),
                    training=False,
                    mode='upscale_in_train',
                )
                res13 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.5,
                    axis=1,
                    training=True,
                    mode='upscale_in_train',
                )
559

560
            res_list = [
561 562 563 564 565 566 567 568 569 570 571
                res1,
                res2,
                res3,
                res4,
                res5,
                res6,
                res7,
                res8,
                res9,
                res11,
                res12,
572
            ]
573
            for res in res_list:
574 575
                np.testing.assert_allclose(res.numpy(), res_np, rtol=1e-05)
            np.testing.assert_allclose(res10.numpy(), res_np2, rtol=1e-05)
576 577 578 579 580 581 582 583


class TestDropoutFAPIError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of dropout must be Variable.
584 585 586
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()
                )
587 588 589 590 591 592
                paddle.nn.functional.dropout(x1, p=0.5)

            self.assertRaises(TypeError, test_Variable)

            def test_Variable2():
                # the input of dropout must be Variable.
593 594 595
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()
                )
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
                paddle.nn.functional.dropout(x1, p=0.5, axis=0)

            self.assertRaises(TypeError, test_Variable2)

            def test_dtype():
                # the input dtype of dropout must be float32 or float64
                # float16 only can be set on GPU place
                xr = fluid.data(name='xr', shape=[3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.dropout(xr, p=0.5)

            self.assertRaises(TypeError, test_dtype)

            def test_pdtype():
                # p should be int or float
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, p='0.5')

            self.assertRaises(TypeError, test_pdtype)

            def test_pvalue():
                # p should be 0.<=p<=1.
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, p=1.2)

            self.assertRaises(ValueError, test_pvalue)

            def test_mode():
                # mode should be 'downscale_in_infer' or 'upscale_in_train'
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, mode='abc')

            self.assertRaises(ValueError, test_mode)

            def test_axis():
                # axis should be int or list
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=1.2)

            self.assertRaises(TypeError, test_axis)

            def test_axis_max():
                # maximum of axis should less than dimensions of x
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=[0, 5])

            self.assertRaises(ValueError, test_axis_max)

643 644 645 646 647 648 649
            def test_axis_min():
                # minimum of axis should greater equal than 0
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=[0, -1])

            self.assertRaises(ValueError, test_axis_min)

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
            def test_axis_len():
                # length of axis should not greater than dimensions of x
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=[0, 1, 2, 3, 4])

            self.assertRaises(ValueError, test_axis_len)


class TestDropoutCAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([40, 40]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
671
                m = paddle.nn.Dropout(p=0.0)
672 673
                m.eval()
                result = m(input)
674 675 676
                np.testing.assert_allclose(
                    result.numpy(), result_np, rtol=1e-05
                )
677 678


C
cnn 已提交
679
class TestDropout2DFAPI(unittest.TestCase):
680 681 682 683 684 685 686 687
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
688 689 690 691 692 693 694 695 696
            input = fluid.data(
                name="input", shape=[2, 3, 4, 5], dtype="float32"
            )
            res1 = paddle.nn.functional.dropout2d(
                x=input, p=0.0, training=False, data_format='NCHW'
            )
            res2 = paddle.nn.functional.dropout2d(
                x=input, p=0.0, training=False, data_format='NHWC'
            )
697 698 699 700 701 702 703

            in_np = np.random.random([2, 3, 4, 5]).astype("float32")
            res_np = in_np

            exe = fluid.Executor(place)
            res_list = [res1, res2]
            for res in res_list:
704 705 706 707 708
                fetches = exe.run(
                    fluid.default_main_program(),
                    feed={"input": in_np},
                    fetch_list=[res],
                )
709
                np.testing.assert_allclose(fetches[0], res_np, rtol=1e-05)
710 711 712 713 714 715 716 717 718 719 720 721

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([2, 3, 4, 5]).astype("float32")
                res_np = in_np
                input = fluid.dygraph.to_variable(in_np)

722 723 724 725 726 727
                res1 = paddle.nn.functional.dropout2d(
                    x=input, p=0.0, training=False, data_format='NCHW'
                )
                res2 = paddle.nn.functional.dropout2d(
                    x=input, p=0.0, training=False, data_format='NHWC'
                )
728 729 730

            res_list = [res1, res2]
            for res in res_list:
731
                np.testing.assert_allclose(res.numpy(), res_np, rtol=1e-05)
732 733


C
cnn 已提交
734
class TestDropout2DFAPIError(unittest.TestCase):
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_xdim():
                # dimentions of x should be 4
                x = fluid.data(name='x1', shape=[2, 3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.dropout2d(x)

            self.assertRaises(ValueError, test_xdim)

            def test_dataformat():
                # data_format should be 'NCHW' or 'NHWC'
                x = fluid.data(name='x2', shape=[2, 3, 4, 5], dtype="int32")
                paddle.nn.functional.dropout2d(x, data_format='CNHW')

            self.assertRaises(ValueError, test_dataformat)


C
cnn 已提交
753
class TestDropout2DCAPI(unittest.TestCase):
754 755 756 757 758 759 760 761 762 763 764 765
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([2, 3, 4, 5]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
766
                m = paddle.nn.Dropout2D(p=0.0)
767 768
                m.eval()
                result = m(input)
769 770 771
                np.testing.assert_allclose(
                    result.numpy(), result_np, rtol=1e-05
                )
772 773


C
cnn 已提交
774
class TestDropout3DFAPI(unittest.TestCase):
775 776 777 778 779 780 781 782
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
783 784 785 786 787 788 789 790 791
            input = fluid.data(
                name="input", shape=[2, 3, 4, 5, 6], dtype="float32"
            )
            res1 = paddle.nn.functional.dropout3d(
                x=input, p=0.0, training=False, data_format='NCDHW'
            )
            res2 = paddle.nn.functional.dropout3d(
                x=input, p=0.0, training=False, data_format='NDHWC'
            )
792 793 794 795 796 797 798

            in_np = np.random.random([2, 3, 4, 5, 6]).astype("float32")
            res_np = in_np

            exe = fluid.Executor(place)
            res_list = [res1, res2]
            for res in res_list:
799 800 801 802 803
                fetches = exe.run(
                    fluid.default_main_program(),
                    feed={"input": in_np},
                    fetch_list=[res],
                )
804
                np.testing.assert_allclose(fetches[0], res_np, rtol=1e-05)
805 806 807 808 809 810 811 812 813 814 815 816

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([2, 3, 4, 5, 6]).astype("float32")
                res_np = in_np
                input = fluid.dygraph.to_variable(in_np)

817 818 819 820 821 822
                res1 = paddle.nn.functional.dropout3d(
                    x=input, p=0.0, training=False, data_format='NCDHW'
                )
                res2 = paddle.nn.functional.dropout3d(
                    x=input, p=0.0, training=False, data_format='NDHWC'
                )
823 824 825

            res_list = [res1, res2]
            for res in res_list:
826
                np.testing.assert_allclose(res.numpy(), res_np, rtol=1e-05)
827 828


C
cnn 已提交
829
class TestDropout3DFAPIError(unittest.TestCase):
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_xdim():
                # dimentions of x should be 5
                x = fluid.data(name='x1', shape=[2, 3, 4, 5], dtype="int32")
                paddle.nn.functional.dropout3d(x)

            self.assertRaises(ValueError, test_xdim)

            def test_dataformat():
                # data_format should be 'NCDHW' or 'NDHWC'
                x = fluid.data(name='x2', shape=[2, 3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.dropout3d(x, data_format='CNDHW')

            self.assertRaises(ValueError, test_dataformat)


C
cnn 已提交
848
class TestDropout3DCAPI(unittest.TestCase):
849 850 851 852 853 854 855 856 857 858 859 860
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([2, 3, 4, 5, 6]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
861
                m = paddle.nn.Dropout3D(p=0.0)
862 863
                m.eval()
                result = m(input)
864 865 866
                np.testing.assert_allclose(
                    result.numpy(), result_np, rtol=1e-05
                )
867 868


869 870 871 872 873 874 875 876 877 878
class TestAlphaDropoutFAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[40, 40], dtype="float32")
879 880 881 882 883
            res1 = paddle.nn.functional.alpha_dropout(x=input, p=0.0)
            res2 = paddle.nn.functional.alpha_dropout(
                x=input, p=0.0, training=False
            )
            res3 = paddle.nn.functional.alpha_dropout(x=input, p=1.0)
884 885 886

            in_np = np.random.random([40, 40]).astype("float32")
            res_np = in_np
887
            res_np3 = np.zeros_like(in_np)
888 889 890 891

            exe = fluid.Executor(place)
            res_list = [res1, res2]
            for res in res_list:
892 893 894 895 896
                fetches = exe.run(
                    fluid.default_main_program(),
                    feed={"input": in_np},
                    fetch_list=[res],
                )
897
                np.testing.assert_allclose(fetches[0], res_np, rtol=1e-05)
898 899 900 901 902
            fetches = exe.run(
                fluid.default_main_program(),
                feed={"input": in_np},
                fetch_list=[res3],
            )
903
            np.testing.assert_allclose(fetches[0], res_np3, rtol=1e-05)
904 905 906 907 908 909 910 911 912 913

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([40, 40]).astype("float32")
                res_np = in_np
914
                res_np3 = np.zeros_like(in_np)
915 916
                input = fluid.dygraph.to_variable(in_np)

917 918 919 920 921
                res1 = paddle.nn.functional.alpha_dropout(x=input, p=0.0)
                res2 = paddle.nn.functional.alpha_dropout(
                    x=input, p=0.0, training=False
                )
                res3 = paddle.nn.functional.alpha_dropout(x=input, p=1.0)
922 923 924

            res_list = [res1, res2]
            for res in res_list:
925 926
                np.testing.assert_allclose(res.numpy(), res_np, rtol=1e-05)
            np.testing.assert_allclose(res3.numpy(), res_np3, rtol=1e-05)
927 928 929 930 931 932 933 934


class TestAlphaDropoutFAPIError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of dropout must be Variable.
935 936 937
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()
                )
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
                paddle.nn.functional.alpha_dropout(x1, p=0.5)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                # the input dtype of dropout must be float32 or float64
                xr = fluid.data(name='xr', shape=[3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.alpha_dropout(xr)

            self.assertRaises(TypeError, test_dtype)

            def test_pdtype():
                # p should be int or float
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.alpha_dropout(x2, p='0.5')

            self.assertRaises(TypeError, test_pdtype)

            def test_pvalue():
                # p should be 0.<=p<=1.
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.alpha_dropout(x2, p=1.2)

            self.assertRaises(ValueError, test_pvalue)


class TestAlphaDropoutCAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([40, 40]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
977
                m = paddle.nn.AlphaDropout(p=0.0)
978 979
                m.eval()
                result = m(input)
980 981 982
                np.testing.assert_allclose(
                    result.numpy(), result_np, rtol=1e-05
                )
983 984


985 986 987 988 989 990 991 992 993 994 995
class TestDropoutWithDeterminateSeedGenerator(unittest.TestCase):
    def setUp(self):
        paddle.framework.random.set_random_seed_generator('seed0', 123)
        paddle.framework.random.set_random_seed_generator('seed1', 123)
        rng0 = paddle.framework.random.get_random_seed_generator('seed0')
        rng1 = paddle.framework.random.get_random_seed_generator('seed1')
        self.places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

    def check_static_result(self, place):
996 997 998 999
        from paddle.distributed.fleet.meta_parallel.parallel_layers.random import (
            dropout,
        )

1000 1001
        with static.program_guard(static.Program(), static.Program()):
            input = static.data(name="input", shape=[40, 40], dtype="float32")
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
            res1 = dropout(
                input,
                p=0.3,
                training=True,
                mode='upscale_in_train',
                rng_name='seed0',
            )
            res2 = dropout(
                input,
                p=0.3,
                training=True,
                mode='upscale_in_train',
                rng_name='seed1',
            )
1016 1017 1018 1019 1020 1021 1022
            res3 = dropout(input, p=0.3)

            in_np = np.random.random([40, 40]).astype("float32")

            exe = static.Executor(place)
            res_list = [res1, res2]
            for i in range(2):
1023 1024 1025 1026 1027
                out1, out2 = exe.run(
                    static.default_main_program(),
                    feed={"input": in_np},
                    fetch_list=res_list,
                )
1028
                np.testing.assert_allclose(out1, out2, rtol=1e-05)
1029 1030 1031 1032 1033 1034

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)


H
hong 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
class TestDropoutBackward(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def cal_grad_upscale_train(self, mask, prob):
        return mask.astype("float32") / (1 - prob)

    def cal_grad_downscale_in_infer(self, mask):
        return mask.astype("float32")

    def test_backward_downscale_in_infer(self):
1049
        _enable_legacy_dygraph()
H
hong 已提交
1050 1051 1052 1053 1054 1055 1056 1057
        for place in self.places:
            with fluid.dygraph.guard(place):

                input = paddle.uniform([40, 40], dtype="float32")
                input.stop_gradient = False
                out, mask = core.ops.dropout(input, 'dropout_prob', 0.5)
                out.backward()

1058 1059
                np.testing.assert_array_equal(
                    input.gradient(),
1060 1061
                    self.cal_grad_downscale_in_infer(mask.numpy()),
                )
H
hong 已提交
1062

H
hong 已提交
1063 1064 1065 1066 1067 1068
    def test_backward_downscale_in_infer_eager(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                with _test_eager_guard():
                    input = paddle.uniform([40, 40], dtype="float32")
                    input.stop_gradient = False
1069 1070 1071
                    out, mask = _C_ops.dropout(
                        input, None, 0.5, False, "downgrade_in_infer", 0, False
                    )
H
hong 已提交
1072
                    out.backward()
1073 1074
                    np.testing.assert_array_equal(
                        input.gradient(),
1075 1076
                        self.cal_grad_downscale_in_infer(mask.numpy()),
                    )
H
hong 已提交
1077

H
hong 已提交
1078
    def test_backward_upscale_train(self):
1079
        _enable_legacy_dygraph()
H
hong 已提交
1080 1081 1082 1083 1084 1085
        for place in self.places:
            with fluid.dygraph.guard(place):

                prob = 0.5
                input = paddle.uniform([40, 40], dtype="float32")
                input.stop_gradient = False
1086 1087 1088 1089 1090 1091 1092
                out, mask = core.ops.dropout(
                    input,
                    'dropout_prob',
                    prob,
                    "dropout_implementation",
                    "upscale_in_train",
                )
H
hong 已提交
1093 1094
                out.backward()

1095 1096 1097 1098 1099
                np.testing.assert_allclose(
                    input.gradient(),
                    self.cal_grad_upscale_train(mask.numpy(), prob),
                    rtol=1e-05,
                )
H
hong 已提交
1100 1101 1102 1103 1104 1105 1106 1107

    def test_backward_upscale_train_eager(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                with _test_eager_guard():
                    prob = 0.5
                    input = paddle.uniform([40, 40], dtype="float32")
                    input.stop_gradient = False
1108 1109 1110
                    out, mask = _C_ops.dropout(
                        input, None, 0.5, False, "upscale_in_train", 0, False
                    )
H
hong 已提交
1111 1112
                    out.backward()

1113 1114 1115 1116 1117
                    np.testing.assert_allclose(
                        input.gradient(),
                        self.cal_grad_upscale_train(mask.numpy(), prob),
                        rtol=1e-05,
                    )
H
hong 已提交
1118 1119

    def test_backward_upscale_train_2(self):
1120
        _enable_legacy_dygraph()
H
hong 已提交
1121 1122 1123 1124 1125 1126
        for place in self.places:
            with fluid.dygraph.guard(place):

                prob = 0.3
                input = paddle.uniform([40, 40], dtype="float32")
                input.stop_gradient = False
1127 1128 1129 1130 1131 1132 1133
                out, mask = core.ops.dropout(
                    input,
                    'dropout_prob',
                    prob,
                    "dropout_implementation",
                    "upscale_in_train",
                )
H
hong 已提交
1134 1135
                out.backward()

1136 1137 1138 1139 1140
                np.testing.assert_allclose(
                    input.gradient(),
                    self.cal_grad_upscale_train(mask.numpy(), prob),
                    rtol=1e-05,
                )
H
hong 已提交
1141

1142 1143 1144 1145 1146 1147 1148 1149
    def test_backward_upscale_train_2_eager(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                with _test_eager_guard():

                    prob = 0.3
                    input = paddle.uniform([40, 40], dtype="float32")
                    input.stop_gradient = False
1150 1151 1152
                    out, mask = _C_ops.dropout(
                        input, None, 0.3, False, "upscale_in_train", 0, False
                    )
1153 1154 1155

                    out.backward()

1156 1157 1158 1159 1160
                    np.testing.assert_allclose(
                        input.gradient(),
                        self.cal_grad_upscale_train(mask.numpy(), prob),
                        rtol=1e-05,
                    )
1161

H
hong 已提交
1162

1163 1164
class TestDropOutWithProbTensor(unittest.TestCase):
    def setUp(self):
1165 1166
        self.init_info()
        self.input = np.random.random(self.shape).astype("float32")
1167 1168 1169 1170 1171
        self.place = (
            paddle.CUDAPlace(0)
            if paddle.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
1172

1173 1174 1175 1176
    def init_info(self):
        self.shape = [10, 10]
        self.api = paddle.nn.functional.dropout

1177 1178
    def api_case(self, x):
        p = paddle.assign([0.5])
1179
        out = self.api(x=x, p=p, training=True)
1180 1181 1182 1183 1184 1185 1186 1187 1188
        return out

    def run_static(self, x):
        paddle.seed(2022)
        main_program = Program()

        with program_guard(main_program):
            input = paddle.static.data(shape=x.shape, name='x', dtype='float32')
            out = self.api_case(input)
1189 1190
            sgd = paddle.optimizer.SGD(learning_rate=0.1)
            sgd.minimize(paddle.mean(out))
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203

            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'x': x}, fetch_list=[out])

        return res[0]

    def run_dygraph(self, x):
        paddle.seed(2022)
        with fluid.dygraph.guard(self.place):
            out = self.api_case(paddle.to_tensor(x))
        return out

    def test_p_tensor(self):
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
        static_res = self.run_static(self.input)
        dygraph_res = self.run_dygraph(self.input)
        np.testing.assert_array_equal(static_res, dygraph_res)


class TestDropOut2DWithProbTensor(TestDropOutWithProbTensor):
    def init_info(self):
        self.shape = [2, 3, 10, 10]
        self.api = paddle.nn.functional.dropout2d


class TestDropOut3DWithProbTensor(TestDropOutWithProbTensor):
    def init_info(self):
        self.shape = [2, 3, 8, 8, 8]
        self.api = paddle.nn.functional.dropout3d
1219 1220


1221 1222 1223 1224 1225 1226 1227
class TestRandomValue(unittest.TestCase):
    def test_fixed_random_number(self):
        # Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t'
        if not paddle.is_compiled_with_cuda():
            return

        # Different GPU generate different random value. Only test V100 here.
1228
        if "V100" not in paddle.device.cuda.get_device_name():
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
            return

        print("Test Fixed Random number on V100 GPU------>")
        paddle.disable_static()
        paddle.set_device('gpu')
        paddle.seed(100)

        x = paddle.rand([32, 1024, 1024], dtype='float32')
        out = paddle.nn.functional.dropout(x, 0.25).numpy()
        index0, index1, index2 = np.nonzero(out)
        self.assertEqual(np.sum(index0), 390094540)
        self.assertEqual(np.sum(index1), 12871475125)
        self.assertEqual(np.sum(index2), 12872777397)
        self.assertEqual(np.sum(out), 16778744.0)
        expect = [
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
            0.6914956,
            0.5294584,
            0.19032137,
            0.6996228,
            0.3338527,
            0.8442094,
            0.96965003,
            1.1726775,
            0.0,
            0.28037727,
1254
        ]
1255
        np.testing.assert_allclose(out[10, 100, 500:510], expect, rtol=1e-05)
1256 1257 1258 1259 1260 1261 1262 1263 1264

        x = paddle.rand([32, 1024, 1024], dtype='float64')
        out = paddle.nn.functional.dropout(x).numpy()
        index0, index1, index2 = np.nonzero(out)
        self.assertEqual(np.sum(index0), 260065137)
        self.assertEqual(np.sum(index1), 8582636095)
        self.assertEqual(np.sum(index2), 8582219962)
        self.assertEqual(np.sum(out), 16778396.563660286)
        expect = [
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
            1.28587354,
            0.15563703,
            0.0,
            0.28799703,
            0.0,
            0.0,
            0.0,
            0.54964,
            0.51355682,
            0.33818988,
1275
        ]
1276
        np.testing.assert_allclose(out[20, 100, 500:510], expect, rtol=1e-05)
1277 1278 1279 1280 1281 1282 1283

        x = paddle.ones([32, 1024, 1024], dtype='float16')
        out = paddle.nn.functional.dropout(x, 0.75).numpy()
        index0, index1, index2 = np.nonzero(out)
        self.assertEqual(np.sum(index0), 130086900)
        self.assertEqual(np.sum(index1), 4291190105)
        self.assertEqual(np.sum(index2), 4292243807)
1284
        expect = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 4.0]
1285
        np.testing.assert_allclose(out[0, 100, 500:510], expect, rtol=1e-05)
1286 1287 1288 1289

        paddle.enable_static()


1290
if __name__ == '__main__':
H
hong 已提交
1291
    paddle.enable_static()
1292
    unittest.main()