uniform_random_op.cc 11.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5 6 7 8 9 10 11 12 13
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15
#include "paddle/fluid/operators/uniform_random_op.h"
#include <string>
Y
yaoxuefeng 已提交
16
#include "paddle/fluid/framework/generator.h"
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
Y
yaoxuefeng 已提交
19

Y
Yu Yang 已提交
20 21
namespace paddle {
namespace operators {
Y
Yu Yang 已提交
22

Q
qijun 已提交
23 24 25 26
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename T>
Y
Yu Yang 已提交
27
class CPUUniformRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
28
 public:
C
chengduo 已提交
29 30
  void Compute(const framework::ExecutionContext &ctx) const override {
    framework::Tensor *tensor = nullptr;
Y
Yancey1989 已提交
31
    auto out_var = ctx.OutputVar("Out");
32 33 34 35 36 37
    std::vector<int64_t> new_shape;
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensorList");
    if (list_new_shape_tensor.size() > 0 || ctx.HasInput("ShapeTensor")) {
      if (ctx.HasInput("ShapeTensor")) {
        auto *shape_tensor = ctx.Input<framework::Tensor>("ShapeTensor");
38
        new_shape = GetNewDataFromShapeTensor(shape_tensor);
39
      } else if (list_new_shape_tensor.size() > 0) {
40
        new_shape = GetNewDataFromShapeTensorList(list_new_shape_tensor);
41 42 43 44
      }
    }

    if (out_var->IsType<framework::SelectedRows>()) {
C
chengduo 已提交
45
      auto *selected_rows = out_var->GetMutable<framework::SelectedRows>();
46
      tensor = selected_rows->mutable_value();
47 48
      auto shape = ctx.Attr<std::vector<int64_t>>("shape");
      if (!new_shape.empty()) shape = new_shape;
Y
Yancey1989 已提交
49
      tensor->Resize(framework::make_ddim(shape));
50
      selected_rows->mutable_rows()->reserve(shape[0]);
51 52 53
    } else if (out_var->IsType<framework::LoDTensor>()) {
      tensor = out_var->GetMutable<framework::LoDTensor>();
      if (!new_shape.empty()) tensor->Resize(framework::make_ddim(new_shape));
Y
Yancey1989 已提交
54
    } else {
Y
Yancey1989 已提交
55 56
      PADDLE_THROW(
          "uniform_random_op's output only"
T
tangwei12 已提交
57
          "supports SelectedRows and LoDTensor");
Y
Yancey1989 已提交
58
    }
C
chengduo 已提交
59
    T *data = tensor->mutable_data<T>(ctx.GetPlace());
Y
yaoxuefeng 已提交
60 61

    int64_t size = tensor->numel();
Q
qijun 已提交
62
    std::uniform_real_distribution<T> dist(
Q
Qiao Longfei 已提交
63 64
        static_cast<T>(ctx.Attr<float>("min")),
        static_cast<T>(ctx.Attr<float>("max")));
Y
yaoxuefeng 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    auto gen_ptr = framework::Generator::GetInstance();
    if (gen_ptr->is_init_py) {
      std::mt19937_64 &gen_engine = gen_ptr->GetCPUEngine();
      // auto gen_engine = gen_ptr_->GetCPUEngine();
      // std::uniform_real_distribution<T> dist(
      //    static_cast<T>(ctx.Attr<float>("min")),
      //    static_cast<T>(ctx.Attr<float>("max")));

      for (int64_t i = 0; i < size; ++i) {
        data[i] = dist(gen_engine);
      }
    } else {
      unsigned int seed = static_cast<unsigned int>(ctx.Attr<int>("seed"));
      std::minstd_rand engine;
      if (seed == 0) {
        seed = std::random_device()();
      }
      engine.seed(seed);
      // std::uniform_real_distribution<T> dist(
      //    static_cast<T>(ctx.Attr<float>("min")),
      //    static_cast<T>(ctx.Attr<float>("max")));
      // int64_t size = tensor->numel();
      for (int64_t i = 0; i < size; ++i) {
        data[i] = dist(engine);
      }
Q
qijun 已提交
90
    }
Y
yaoxuefeng 已提交
91 92 93
    // std::mt19937_64 &engine = gen_ptr->GetCPUEngine();
    // auto engine = gen_ptr_->GetCPUEngine();

94 95 96 97 98 99
    unsigned int diag_num =
        static_cast<unsigned int>(ctx.Attr<int>("diag_num"));
    unsigned int diag_step =
        static_cast<unsigned int>(ctx.Attr<int>("diag_step"));
    auto diag_val = static_cast<T>(ctx.Attr<float>("diag_val"));
    if (diag_num > 0) {
100 101 102 103 104 105 106
      PADDLE_ENFORCE_GT(
          size, (diag_num - 1) * (diag_step + 1),
          platform::errors::InvalidArgument(
              "ShapeInvalid: the diagonal's elements is equal (num-1) "
              "* (step-1) with num %d, step %d,"
              "It should be smaller than %d, but received %d",
              diag_num, diag_step, (diag_num - 1) * (diag_step + 1), size));
107 108 109 110 111
      for (int64_t i = 0; i < diag_num; ++i) {
        int64_t pos = i * diag_step + i;
        data[pos] = diag_val;
      }
    }
Q
qijun 已提交
112 113 114
  }
};

Y
Yu Yang 已提交
115
class UniformRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
116 117 118
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
chengduo 已提交
119
  void InferShape(framework::InferShapeContext *ctx) const override {
120 121 122 123 124 125 126 127
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "UniformRandomOp");

    PADDLE_ENFORCE_LT(
        ctx->Attrs().Get<float>("min"), ctx->Attrs().Get<float>("max"),
        platform::errors::InvalidArgument(
            "The uniform_random's min must less then max. But received min = "
            "%f great than or equal max = %f.",
            ctx->Attrs().Get<float>("min"), ctx->Attrs().Get<float>("max")));
128
    PADDLE_ENFORCE_GE(ctx->Attrs().Get<int>("diag_num"), 0,
129
                      platform::errors::InvalidArgument(
130 131 132
                          "The uniform_random's diag_num must greater than or "
                          "equal 0. But recevied diag_num (%d) < 0.",
                          ctx->Attrs().Get<int>("diag_num")));
133
    PADDLE_ENFORCE_GE(ctx->Attrs().Get<int>("diag_step"), 0,
134
                      platform::errors::InvalidArgument(
135 136 137
                          "The uniform_random's diag_step must greater than or "
                          "equal 0. But recevied diag_step (%d) < 0.",
                          ctx->Attrs().Get<int>("diag_step")));
138 139 140 141 142 143

    if (ctx->HasInputs("ShapeTensorList")) {
      // top prority shape
      auto inputs_name = ctx->Inputs("ShapeTensorList");
      PADDLE_ENFORCE_GT(
          inputs_name.size(), 0,
144 145 146 147
          platform::errors::InvalidArgument(
              "Input(ShapeTensorList)'size of Op(uniform_random) can't be zero."
              "Please check the Attr(shape)'s size of"
              "Op(fluid.layers.uniform_random).)"));
148 149 150 151 152 153 154 155 156 157
      auto out_dims = std::vector<int>(inputs_name.size(), -1);
      ctx->SetOutputDim("Out", framework::make_ddim(out_dims));

      return;
    }
    auto &shape = ctx->Attrs().Get<std::vector<int64_t>>("shape");
    if (ctx->HasInput("ShapeTensor") && shape.empty()) {
      auto shape_dims = ctx->GetInputDim("ShapeTensor");
      PADDLE_ENFORCE_EQ(
          shape_dims.size(), 1,
158 159 160 161 162
          platform::errors::InvalidArgument(
              "ShapeError: Input(ShapeTensor)' dimension size of "
              "Op(uniform_random) must be 1."
              "But received ShapeTensor's dimensions = %d, shape = [%s]",
              shape_dims.size(), shape_dims));
163 164 165 166 167 168 169 170 171 172
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int64_t>(num_ele, -1);
      auto out_dims = framework::make_ddim(vec_dims);
      ctx->SetOutputDim("Out", out_dims);
      return;
    }

173 174 175 176 177 178
    PADDLE_ENFORCE_EQ(shape.empty(), false,
                      platform::errors::InvalidArgument(
                          "if there is no Input(ShapeTensorList) and no "
                          "Input(ShapeTensor),the "
                          "attr(shape) information must "
                          "be set by Attr(shape)."));
179 180
    std::vector<int64_t> tensor_shape;
    tensor_shape.reserve(shape.size());
Q
QI JUN 已提交
181
    for (auto dim : shape) {
182
      tensor_shape.push_back(static_cast<int64_t>(dim));
Q
qijun 已提交
183
    }
184
    ctx->SetOutputDim("Out", framework::make_ddim(tensor_shape));
Y
Yu Yang 已提交
185
  }
Y
Yu Yang 已提交
186

187
 protected:
188
  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
189
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
190
    return framework::OpKernelType(
191
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
Q
QI JUN 已提交
192
        ctx.GetPlace());
Y
Yu Yang 已提交
193
  }
194 195 196 197 198 199 200 201 202 203

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensorList" || var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
Yu Yang 已提交
204 205
};

Y
Yu Yang 已提交
206
class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
207
 public:
Y
Yu Yang 已提交
208
  void Make() override {
209
    AddInput("ShapeTensor",
210 211
             "(Tensor<int64_t> or Tensor<int32_t>, optional) . If provided, "
             "uniform_random "
212
             "according to "
213
             "this given shape. It means that it has a higher priority than "
214
             "the shape attribute, while the shape attribute still should be "
T
tianshuo78520a 已提交
215
             "set correctly to guarantee shape inference in compile time.")
216 217
        .AsDispensable();
    AddInput("ShapeTensorList",
218 219 220 221
             "(vector<Tensor<int64_t>> or vector<Tensor<int32_t>>, optional). "
             "If provided, uniform_random use this. The shape of the tensor "
             "must be [1], it has the highest priority comparing with "
             "Input(ShapeTensor) and attr(shape).")
222 223
        .AsDuplicable()
        .AsDispensable();
Y
yuyang18 已提交
224
    AddOutput("Out", "The output tensor of uniform random op");
225
    AddComment(R"DOC(
226
This operator initializes a tensor with random values sampled from a
227
uniform distribution. The random result is in set [min, max).
228

Y
Yu Yang 已提交
229
)DOC");
230 231
    AddAttr<std::vector<int64_t>>("shape", "The shape of the output tensor")
        .SetDefault({});
Y
yuyang18 已提交
232
    AddAttr<float>("min", "Minimum value of uniform random. [default -1.0].")
233
        .SetDefault(-1.0f);
Y
yuyang18 已提交
234
    AddAttr<float>("max", "Maximun value of uniform random. [default 1.0].")
235
        .SetDefault(1.0f);
Q
qijun 已提交
236
    AddAttr<int>("seed",
237
                 "Random seed used for generating samples. "
238 239
                 "0 means use a seed generated by the system."
                 "Note that if seed is not 0, this operator will always "
Y
yuyang18 已提交
240
                 "generate the same random numbers every time. [default 0].")
Q
qijun 已提交
241
        .SetDefault(0);
242 243 244 245 246 247 248 249
    AddAttr<int>("diag_num",
                 "The number of diag elements. Note that if "
                 "diag_num is 0, it means without diag init.[default 0].")
        .SetDefault(0);
    AddAttr<int>("diag_step", "The step between two diag element.[default 0].")
        .SetDefault(0);
    AddAttr<float>("diag_val", "The value of diag element. [default 1.0].")
        .SetDefault(1.0f);
Y
yuyang18 已提交
250
    AddAttr<int>("dtype", "Output tensor data type. [default 5(FP32)].")
251
        .SetDefault(framework::proto::VarType::FP32);
Y
Yu Yang 已提交
252 253
  }
};
Y
Yancey1989 已提交
254 255 256

class UniformRandomOpVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
257
  void operator()(framework::InferVarTypeContext *ctx) const override {
C
chengduo 已提交
258
    auto var_data_type = static_cast<framework::proto::VarType::Type>(
259
        BOOST_GET_CONST(int, ctx->GetAttr("dtype")));
C
chengduo 已提交
260

261 262
    if (ctx->GetOutputType("Out") != framework::proto::VarType::SELECTED_ROWS) {
      ctx->SetOutputType("Out", framework::proto::VarType::LOD_TENSOR);
Y
Yancey1989 已提交
263
    }
264
    ctx->SetOutputDataType("Out", var_data_type);
Y
Yancey1989 已提交
265 266 267
  }
};

Y
Yu Yang 已提交
268 269 270
}  // namespace operators
}  // namespace paddle

H
hong 已提交
271 272 273 274 275 276
REGISTER_OPERATOR(
    uniform_random, paddle::operators::UniformRandomOp,
    paddle::operators::UniformRandomOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
    paddle::operators::UniformRandomOpVarTypeInference);
Y
Yancey1989 已提交
277

Q
qijun 已提交
278
REGISTER_OP_CPU_KERNEL(uniform_random,
279 280
                       paddle::operators::CPUUniformRandomKernel<float>,
                       paddle::operators::CPUUniformRandomKernel<double>);
281 282 283
REGISTER_OP_CPU_KERNEL(uniform_random_batch_size_like,
                       paddle::operators::CPUUniformRandomKernel<float>,
                       paddle::operators::CPUUniformRandomKernel<double>);