uniform_random_op.cc 10.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5 6 7 8 9 10 11 12 13
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15
#include "paddle/fluid/operators/uniform_random_op.h"
#include <string>
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
Y
Yu Yang 已提交
18 19
namespace paddle {
namespace operators {
Y
Yu Yang 已提交
20

Q
qijun 已提交
21 22 23 24
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename T>
Y
Yu Yang 已提交
25
class CPUUniformRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
26
 public:
C
chengduo 已提交
27 28
  void Compute(const framework::ExecutionContext &ctx) const override {
    framework::Tensor *tensor = nullptr;
Y
Yancey1989 已提交
29
    auto out_var = ctx.OutputVar("Out");
30 31 32 33 34 35
    std::vector<int64_t> new_shape;
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensorList");
    if (list_new_shape_tensor.size() > 0 || ctx.HasInput("ShapeTensor")) {
      if (ctx.HasInput("ShapeTensor")) {
        auto *shape_tensor = ctx.Input<framework::Tensor>("ShapeTensor");
36
        new_shape = GetNewDataFromShapeTensor(shape_tensor);
37
      } else if (list_new_shape_tensor.size() > 0) {
38
        new_shape = GetNewDataFromShapeTensorList(list_new_shape_tensor);
39 40 41 42
      }
    }

    if (out_var->IsType<framework::SelectedRows>()) {
C
chengduo 已提交
43
      auto *selected_rows = out_var->GetMutable<framework::SelectedRows>();
44
      tensor = selected_rows->mutable_value();
45 46
      auto shape = ctx.Attr<std::vector<int64_t>>("shape");
      if (!new_shape.empty()) shape = new_shape;
Y
Yancey1989 已提交
47
      tensor->Resize(framework::make_ddim(shape));
48
      selected_rows->mutable_rows()->reserve(shape[0]);
49 50 51
    } else if (out_var->IsType<framework::LoDTensor>()) {
      tensor = out_var->GetMutable<framework::LoDTensor>();
      if (!new_shape.empty()) tensor->Resize(framework::make_ddim(new_shape));
Y
Yancey1989 已提交
52
    } else {
Y
Yancey1989 已提交
53 54
      PADDLE_THROW(
          "uniform_random_op's output only"
T
tangwei12 已提交
55
          "supports SelectedRows and LoDTensor");
Y
Yancey1989 已提交
56
    }
C
chengduo 已提交
57
    T *data = tensor->mutable_data<T>(ctx.GetPlace());
Q
Qiao Longfei 已提交
58
    unsigned int seed = static_cast<unsigned int>(ctx.Attr<int>("seed"));
Q
qijun 已提交
59 60 61 62 63 64
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::uniform_real_distribution<T> dist(
Q
Qiao Longfei 已提交
65 66
        static_cast<T>(ctx.Attr<float>("min")),
        static_cast<T>(ctx.Attr<float>("max")));
67
    int64_t size = tensor->numel();
Q
qijun 已提交
68
    for (int64_t i = 0; i < size; ++i) {
Q
qijun 已提交
69 70
      data[i] = dist(engine);
    }
71 72 73 74 75 76
    unsigned int diag_num =
        static_cast<unsigned int>(ctx.Attr<int>("diag_num"));
    unsigned int diag_step =
        static_cast<unsigned int>(ctx.Attr<int>("diag_step"));
    auto diag_val = static_cast<T>(ctx.Attr<float>("diag_val"));
    if (diag_num > 0) {
77 78 79 80 81 82 83
      PADDLE_ENFORCE_GT(
          size, (diag_num - 1) * (diag_step + 1),
          platform::errors::InvalidArgument(
              "ShapeInvalid: the diagonal's elements is equal (num-1) "
              "* (step-1) with num %d, step %d,"
              "It should be smaller than %d, but received %d",
              diag_num, diag_step, (diag_num - 1) * (diag_step + 1), size));
84 85 86 87 88
      for (int64_t i = 0; i < diag_num; ++i) {
        int64_t pos = i * diag_step + i;
        data[pos] = diag_val;
      }
    }
Q
qijun 已提交
89 90 91
  }
};

Y
Yu Yang 已提交
92
class UniformRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
93 94 95
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
chengduo 已提交
96
  void InferShape(framework::InferShapeContext *ctx) const override {
97
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "UniformRandom");
98 99
    PADDLE_ENFORCE_LT(ctx->Attrs().Get<float>("min"),
                      ctx->Attrs().Get<float>("max"),
100 101
                      platform::errors::InvalidArgument(
                          "uniform_random's min must less then max"));
102
    PADDLE_ENFORCE_GE(ctx->Attrs().Get<int>("diag_num"), 0,
103 104
                      platform::errors::InvalidArgument(
                          "diag_num must greater than or equal 0"));
105
    PADDLE_ENFORCE_GE(ctx->Attrs().Get<int>("diag_step"), 0,
106 107
                      platform::errors::InvalidArgument(
                          "diag_step must greater than or equal 0"));
108 109 110 111 112 113

    if (ctx->HasInputs("ShapeTensorList")) {
      // top prority shape
      auto inputs_name = ctx->Inputs("ShapeTensorList");
      PADDLE_ENFORCE_GT(
          inputs_name.size(), 0,
114 115 116 117
          platform::errors::InvalidArgument(
              "Input(ShapeTensorList)'size of Op(uniform_random) can't be zero."
              "Please check the Attr(shape)'s size of"
              "Op(fluid.layers.uniform_random).)"));
118 119 120 121 122 123 124 125 126 127
      auto out_dims = std::vector<int>(inputs_name.size(), -1);
      ctx->SetOutputDim("Out", framework::make_ddim(out_dims));

      return;
    }
    auto &shape = ctx->Attrs().Get<std::vector<int64_t>>("shape");
    if (ctx->HasInput("ShapeTensor") && shape.empty()) {
      auto shape_dims = ctx->GetInputDim("ShapeTensor");
      PADDLE_ENFORCE_EQ(
          shape_dims.size(), 1,
128 129 130 131 132
          platform::errors::InvalidArgument(
              "ShapeError: Input(ShapeTensor)' dimension size of "
              "Op(uniform_random) must be 1."
              "But received ShapeTensor's dimensions = %d, shape = [%s]",
              shape_dims.size(), shape_dims));
133 134 135 136 137 138 139 140 141 142
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int64_t>(num_ele, -1);
      auto out_dims = framework::make_ddim(vec_dims);
      ctx->SetOutputDim("Out", out_dims);
      return;
    }

143 144 145 146 147 148
    PADDLE_ENFORCE_EQ(shape.empty(), false,
                      platform::errors::InvalidArgument(
                          "if there is no Input(ShapeTensorList) and no "
                          "Input(ShapeTensor),the "
                          "attr(shape) information must "
                          "be set by Attr(shape)."));
149 150
    std::vector<int64_t> tensor_shape;
    tensor_shape.reserve(shape.size());
Q
QI JUN 已提交
151
    for (auto dim : shape) {
152
      tensor_shape.push_back(static_cast<int64_t>(dim));
Q
qijun 已提交
153
    }
154
    ctx->SetOutputDim("Out", framework::make_ddim(tensor_shape));
Y
Yu Yang 已提交
155
  }
Y
Yu Yang 已提交
156

157
 protected:
158
  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
159
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
160
    return framework::OpKernelType(
161
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
Q
QI JUN 已提交
162
        ctx.GetPlace());
Y
Yu Yang 已提交
163
  }
164 165 166 167 168 169 170 171 172 173

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensorList" || var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
Yu Yang 已提交
174 175
};

Y
Yu Yang 已提交
176
class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
177
 public:
Y
Yu Yang 已提交
178
  void Make() override {
179
    AddInput("ShapeTensor",
180 181
             "(Tensor<int64_t> or Tensor<int32_t>, optional) . If provided, "
             "uniform_random "
182
             "according to "
183
             "this given shape. It means that it has a higher priority than "
184
             "the shape attribute, while the shape attribute still should be "
T
tianshuo78520a 已提交
185
             "set correctly to guarantee shape inference in compile time.")
186 187
        .AsDispensable();
    AddInput("ShapeTensorList",
188 189 190 191
             "(vector<Tensor<int64_t>> or vector<Tensor<int32_t>>, optional). "
             "If provided, uniform_random use this. The shape of the tensor "
             "must be [1], it has the highest priority comparing with "
             "Input(ShapeTensor) and attr(shape).")
192 193
        .AsDuplicable()
        .AsDispensable();
Y
yuyang18 已提交
194
    AddOutput("Out", "The output tensor of uniform random op");
195
    AddComment(R"DOC(
196
This operator initializes a tensor with random values sampled from a
197
uniform distribution. The random result is in set [min, max).
198

Y
Yu Yang 已提交
199
)DOC");
200 201
    AddAttr<std::vector<int64_t>>("shape", "The shape of the output tensor")
        .SetDefault({});
Y
yuyang18 已提交
202
    AddAttr<float>("min", "Minimum value of uniform random. [default -1.0].")
203
        .SetDefault(-1.0f);
Y
yuyang18 已提交
204
    AddAttr<float>("max", "Maximun value of uniform random. [default 1.0].")
205
        .SetDefault(1.0f);
Q
qijun 已提交
206
    AddAttr<int>("seed",
207
                 "Random seed used for generating samples. "
208 209
                 "0 means use a seed generated by the system."
                 "Note that if seed is not 0, this operator will always "
Y
yuyang18 已提交
210
                 "generate the same random numbers every time. [default 0].")
Q
qijun 已提交
211
        .SetDefault(0);
212 213 214 215 216 217 218 219
    AddAttr<int>("diag_num",
                 "The number of diag elements. Note that if "
                 "diag_num is 0, it means without diag init.[default 0].")
        .SetDefault(0);
    AddAttr<int>("diag_step", "The step between two diag element.[default 0].")
        .SetDefault(0);
    AddAttr<float>("diag_val", "The value of diag element. [default 1.0].")
        .SetDefault(1.0f);
Y
yuyang18 已提交
220
    AddAttr<int>("dtype", "Output tensor data type. [default 5(FP32)].")
221
        .SetDefault(framework::proto::VarType::FP32);
Y
Yu Yang 已提交
222 223
  }
};
Y
Yancey1989 已提交
224 225 226

class UniformRandomOpVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
227 228
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto out_var_name = ctx->Output("Out").front();
C
chengduo 已提交
229
    auto var_data_type = static_cast<framework::proto::VarType::Type>(
M
minqiyang 已提交
230
        boost::get<int>(ctx->GetAttr("dtype")));
C
chengduo 已提交
231

M
minqiyang 已提交
232 233 234
    if (ctx->GetType(out_var_name) !=
        framework::proto::VarType::SELECTED_ROWS) {
      ctx->SetType(out_var_name, framework::proto::VarType::LOD_TENSOR);
Y
Yancey1989 已提交
235
    }
M
minqiyang 已提交
236
    ctx->SetDataType(out_var_name, var_data_type);
Y
Yancey1989 已提交
237 238 239
  }
};

Y
Yu Yang 已提交
240 241 242
}  // namespace operators
}  // namespace paddle

H
hong 已提交
243 244 245 246 247 248
REGISTER_OPERATOR(
    uniform_random, paddle::operators::UniformRandomOp,
    paddle::operators::UniformRandomOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
    paddle::operators::UniformRandomOpVarTypeInference);
Y
Yancey1989 已提交
249

Q
qijun 已提交
250
REGISTER_OP_CPU_KERNEL(uniform_random,
251 252
                       paddle::operators::CPUUniformRandomKernel<float>,
                       paddle::operators::CPUUniformRandomKernel<double>);
253 254 255
REGISTER_OP_CPU_KERNEL(uniform_random_batch_size_like,
                       paddle::operators::CPUUniformRandomKernel<float>,
                       paddle::operators::CPUUniformRandomKernel<double>);