MKLDNNPoolLayer.cpp 9.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MKLDNNPoolLayer.h"
16
#include "paddle/math/MathUtils.h"
T
tensor-tang 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include "paddle/utils/Logging.h"

using namespace mkldnn;  // NOLINT
typedef memory::format format;

namespace paddle {

REGISTER_LAYER(mkldnn_pool, MKLDNNPoolLayer);

bool MKLDNNPoolLayer::init(const LayerMap& layerMap,
                           const ParameterMap& parameterMap) {
  if (!MKLDNNLayer::init(layerMap, parameterMap)) {
    return false;
  }

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
  /* the size of inputs for pool-layer is 1 */
  CHECK_EQ(config_.inputs_size(), 1);
  const PoolConfig& conf = config_.inputs(0).pool_conf();
  ic_ = conf.channels();
  ih_ = conf.img_size_y();
  iw_ = conf.img_size();
  oc_ = ic_;
  oh_ = conf.output_y();
  ow_ = conf.output_x();
  fh_ = conf.size_y();
  fw_ = conf.size_x();
  ph_ = conf.padding_y();
  pw_ = conf.padding();
  sh_ = conf.stride_y();
  sw_ = conf.stride();

  const std::string& type = conf.pool_type();
  if (type == "max-projection") {
    poolAlgo_ = algorithm::pooling_max;
  } else if (type == "avg-projection") {
52 53
    // paddle only use exclude_padding
    poolAlgo_ = algorithm::pooling_avg_exclude_padding;
54 55 56
  } else {
    LOG(FATAL) << "unknow pooling type!";
  }
T
tensor-tang 已提交
57 58 59 60 61 62
  return true;
}

void MKLDNNPoolLayer::reshape(
    int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
  reshapeInput(bs, ih, iw);
63 64 65
  // ic_ and oc can not be changed
  CHECK_EQ(inputElemenCnt_ / bs / ih / iw, (size_t)ic)
      << "Input channel can not be changed";
T
tensor-tang 已提交
66 67

  // cal output sizes
68 69 70
  // paddle used false caffeMode for pooling
  oh = outputSize(ih, fh_, ph_, sh_, false);
  ow = outputSize(iw, fw_, pw_, sw_, false);
T
tensor-tang 已提交
71
  reshapeOutput(oh, ow);
72

T
tensor-tang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  resizeOutput(bs, oc * oh * ow);

  printSizeInfo();
}

void MKLDNNPoolLayer::resetFwd(std::vector<primitive>& pipeline,
                               MKLDNNMatrixPtr& in,
                               MKLDNNMatrixPtr& wgt,
                               MKLDNNMatrixPtr& bias,
                               MKLDNNMatrixPtr& out) {
  resetFwdBuffers(in, out);

  resetFwdPD(fwdPD_, in, out);

  resetFwdPipeline(pipeline, fwdPD_, in, out);

  printValueFormatFlow();
}

void MKLDNNPoolLayer::resetBwd(std::vector<primitive>& pipeline,
                               MKLDNNMatrixPtr& in,
                               MKLDNNMatrixPtr& wgt,
                               MKLDNNMatrixPtr& bias,
                               MKLDNNMatrixPtr& out) {
  std::shared_ptr<pool_bwd::primitive_desc> pd;

  resetBwdBuffers(in, out);

  resetBwdPD(pd, in, out);

  resetBwdPipeline(pipeline, pd, in, out);

  printGradFormatFlow();
}

void MKLDNNPoolLayer::updateInputData() {
  inVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
}

void MKLDNNPoolLayer::resetFwdBuffers(MKLDNNMatrixPtr& in,
                                      MKLDNNMatrixPtr& out) {
  resetInValue(in);
115

T
tensor-tang 已提交
116 117 118
  resetOutValue(out);
}

119 120 121 122 123 124 125 126 127 128 129 130
void MKLDNNPoolLayer::resetInValue(MKLDNNMatrixPtr& in) {
  if (inputIsOnlyMKLDNN()) {
    const MatrixPtr& dnnIn = getInputValue(0);
    in = std::dynamic_pointer_cast<MKLDNNMatrix>(dnnIn);
    CHECK(in) << "Input should be MKLDNNMatrix";
  } else {
    CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet";
    const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE);
    in = MKLDNNMatrix::create(
        cpuIn, {bs_, ic_, ih_, iw_}, format::nchw, engine_);
  }
}
T
tensor-tang 已提交
131

132 133 134 135 136 137 138 139 140 141 142 143 144
void MKLDNNPoolLayer::resetOutValue(MKLDNNMatrixPtr& out) {
  CHECK(inVal_) << "Should reset input value first";
  memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
  out = MKLDNNMatrix::create(
      output_.value, outDims, inVal_->getFormat(), engine_);

  // create reorder if output value has cpu device and pd do not match
  cpuOutVal_ = nullptr;
  cvtOutVal_ = nullptr;
  if (!outputIsOnlyMKLDNN()) {
    const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value;
    cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_);
    if (cpuOutVal_->getPrimitiveDesc() != out->getPrimitiveDesc()) {
145
      out = MKLDNNMatrix::create(nullptr, out->getPrimitiveDesc());
146 147 148 149 150
      cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_);
      CHECK(cvtOutVal_) << "should not be emptry";
    } else {
      cpuOutVal_ = out;
    }
151 152
    output_.value = std::dynamic_pointer_cast<Matrix>(cpuOutVal_);
    return;
153
  }
154
  output_.value = std::dynamic_pointer_cast<Matrix>(outVal_);
155
}
T
tensor-tang 已提交
156 157 158

void MKLDNNPoolLayer::resetFwdPD(std::shared_ptr<pool_fwd::primitive_desc>& pd,
                                 MKLDNNMatrixPtr in,
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
                                 MKLDNNMatrixPtr out) {
  memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
  memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
  memory::dims kernels = memory::dims{fh_, fw_};
  memory::dims strides = memory::dims{sh_, sw_};
  memory::dims padL = memory::dims{ph_, pw_};
  memory::dims padR = getPaddingR();
  padding_kind padKind = padding_kind::zero;
  prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring
                                        : prop_kind::forward_training;
  auto fwdDesc = pool_fwd::desc(pk,
                                poolAlgo_,
                                in->getMemoryDesc(),
                                out->getMemoryDesc(),
                                strides,
                                kernels,
                                padL,
                                padR,
                                padKind);
  pd.reset(new pool_fwd::primitive_desc(fwdDesc, engine_));

  // prepare workspace if necessary
  workspace_ =
      (passType_ != PASS_TEST && poolAlgo_ == algorithm::pooling_max)
          ? std::make_shared<memory>(memory(pd->workspace_primitive_desc()))
          : nullptr;
}
T
tensor-tang 已提交
186 187

void MKLDNNPoolLayer::resetFwdPipeline(
188
    std::vector<primitive>& pipeline,
T
tensor-tang 已提交
189 190
    std::shared_ptr<pool_fwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
191 192 193 194 195 196 197 198 199 200
    MKLDNNMatrixPtr& out) {
  fwd_ = workspace_
             ? std::make_shared<pool_fwd>(pool_fwd(*pd, *in, *out, *workspace_))
             : std::make_shared<pool_fwd>(pool_fwd(*pd, *in, *out));
  pipeline.push_back(*fwd_);

  if (cvtOutVal_) {
    pipeline.push_back(*cvtOutVal_);
  }
}
T
tensor-tang 已提交
201 202 203 204

void MKLDNNPoolLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
                                      MKLDNNMatrixPtr& out) {
  resetOutGrad(out);
205

T
tensor-tang 已提交
206 207
  resetInGrad(in);
}
208 209 210
void MKLDNNPoolLayer::resetOutGrad(MKLDNNMatrixPtr& out) {
  cpuOutGrad_ = nullptr;
  cvtOutGrad_ = nullptr;
T
tensor-tang 已提交
211 212 213 214
  CHECK(outVal_);
  if (outputIsOnlyMKLDNN()) {
    MKLDNNLayer::resetOutGrad(out, outVal_->getPrimitiveDesc());
  } else {
215 216 217
    const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad;
    cpuOutGrad_ = MKLDNNMatrix::create(
        cpuOut, memory::dims{bs_, oc_, oh_, ow_}, format::nchw, engine_);
T
tensor-tang 已提交
218 219
    if (cpuOutGrad_->getPrimitiveDesc() != outVal_->getPrimitiveDesc()) {
      out = MKLDNNMatrix::create(output_.grad, outVal_->getPrimitiveDesc());
220 221 222 223 224 225 226 227 228
      cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out);
      CHECK(cvtOutGrad_) << "should not be emptry";
    } else {
      // share the same data of CPU output
      output_.grad->setData(cpuOut->getData());
      out = cpuOutGrad_;
    }
  }
}
T
tensor-tang 已提交
229

230 231
void MKLDNNPoolLayer::resetInGrad(MKLDNNMatrixPtr& in) {
  in = nullptr;
T
tensor-tang 已提交
232
  if (inputLayers_[0]->getOutput().grad == nullptr) {
233 234 235
    return;
  }
  CHECK(inVal_);
T
tensor-tang 已提交
236
  MKLDNNLayer::resetInGrad(in, inVal_->getPrimitiveDesc());
237
}
T
tensor-tang 已提交
238 239 240

void MKLDNNPoolLayer::resetBwdPD(std::shared_ptr<pool_bwd::primitive_desc>& pd,
                                 MKLDNNMatrixPtr& in,
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
                                 MKLDNNMatrixPtr& out) {
  memory::dims kernels = memory::dims{fh_, fw_};
  memory::dims strides = memory::dims{sh_, sw_};
  memory::dims padL = memory::dims{ph_, pw_};
  memory::dims padR = getPaddingR();
  CHECK(in);
  CHECK(out);
  auto bwdDesc = pool_bwd::desc(poolAlgo_,
                                in->getMemoryDesc(),
                                out->getMemoryDesc(),
                                strides,
                                kernels,
                                padL,
                                padR,
                                padding_kind::zero);
  pd.reset(new pool_bwd::primitive_desc(bwdDesc, engine_, *fwdPD_));
}
T
tensor-tang 已提交
258 259

void MKLDNNPoolLayer::resetBwdPipeline(
260
    std::vector<primitive>& pipeline,
T
tensor-tang 已提交
261 262
    std::shared_ptr<pool_bwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
263 264 265 266 267 268 269 270 271 272 273
    MKLDNNMatrixPtr& out) {
  if (cvtOutGrad_) {
    pipeline.push_back(*cvtOutGrad_);
  }

  bwdData_ =
      workspace_
          ? std::make_shared<pool_bwd>(pool_bwd(*pd, *out, *workspace_, *in))
          : std::make_shared<pool_bwd>(pool_bwd(*pd, *out, *in));
  pipeline.push_back(*bwdData_);
}
T
tensor-tang 已提交
274 275

}  // namespace paddle