MKLDNNPoolLayer.cpp 8.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MKLDNNPoolLayer.h"
16
#include "paddle/math/MathUtils.h"
T
tensor-tang 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include "paddle/utils/Logging.h"

using namespace mkldnn;  // NOLINT
typedef memory::format format;

namespace paddle {

REGISTER_LAYER(mkldnn_pool, MKLDNNPoolLayer);

bool MKLDNNPoolLayer::init(const LayerMap& layerMap,
                           const ParameterMap& parameterMap) {
  if (!MKLDNNLayer::init(layerMap, parameterMap)) {
    return false;
  }

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
  /* the size of inputs for pool-layer is 1 */
  CHECK_EQ(config_.inputs_size(), 1);
  const PoolConfig& conf = config_.inputs(0).pool_conf();
  ic_ = conf.channels();
  ih_ = conf.img_size_y();
  iw_ = conf.img_size();
  oc_ = ic_;
  oh_ = conf.output_y();
  ow_ = conf.output_x();
  fh_ = conf.size_y();
  fw_ = conf.size_x();
  ph_ = conf.padding_y();
  pw_ = conf.padding();
  sh_ = conf.stride_y();
  sw_ = conf.stride();

  const std::string& type = conf.pool_type();
  if (type == "max-projection") {
    poolAlgo_ = algorithm::pooling_max;
  } else if (type == "avg-projection") {
52 53
    // paddle only use exclude_padding
    poolAlgo_ = algorithm::pooling_avg_exclude_padding;
54 55 56
  } else {
    LOG(FATAL) << "unknow pooling type!";
  }
T
tensor-tang 已提交
57 58 59 60 61 62
  return true;
}

void MKLDNNPoolLayer::reshape(
    int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
  reshapeInput(bs, ih, iw);
63 64 65
  // ic_ and oc can not be changed
  CHECK_EQ(inputElemenCnt_ / bs / ih / iw, (size_t)ic)
      << "Input channel can not be changed";
T
tensor-tang 已提交
66 67

  // cal output sizes
68 69 70
  // paddle used false caffeMode for pooling
  oh = outputSize(ih, fh_, ph_, sh_, false);
  ow = outputSize(iw, fw_, pw_, sw_, false);
T
tensor-tang 已提交
71
  reshapeOutput(oh, ow);
72

T
tensor-tang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  resizeOutput(bs, oc * oh * ow);

  printSizeInfo();
}

void MKLDNNPoolLayer::resetFwd(std::vector<primitive>& pipeline,
                               MKLDNNMatrixPtr& in,
                               MKLDNNMatrixPtr& wgt,
                               MKLDNNMatrixPtr& bias,
                               MKLDNNMatrixPtr& out) {
  resetFwdBuffers(in, out);

  resetFwdPD(fwdPD_, in, out);

  resetFwdPipeline(pipeline, fwdPD_, in, out);

  printValueFormatFlow();
}

void MKLDNNPoolLayer::resetBwd(std::vector<primitive>& pipeline,
                               MKLDNNMatrixPtr& in,
                               MKLDNNMatrixPtr& wgt,
                               MKLDNNMatrixPtr& bias,
                               MKLDNNMatrixPtr& out) {
  std::shared_ptr<pool_bwd::primitive_desc> pd;

  resetBwdBuffers(in, out);

  resetBwdPD(pd, in, out);

  resetBwdPipeline(pipeline, pd, in, out);

  printGradFormatFlow();
}

void MKLDNNPoolLayer::updateInputData() {
  inVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
}

void MKLDNNPoolLayer::resetFwdBuffers(MKLDNNMatrixPtr& in,
                                      MKLDNNMatrixPtr& out) {
  resetInValue(in);
115

T
tensor-tang 已提交
116 117 118
  resetOutValue(out);
}

119 120 121 122 123 124 125 126 127 128 129 130
void MKLDNNPoolLayer::resetInValue(MKLDNNMatrixPtr& in) {
  if (inputIsOnlyMKLDNN()) {
    const MatrixPtr& dnnIn = getInputValue(0);
    in = std::dynamic_pointer_cast<MKLDNNMatrix>(dnnIn);
    CHECK(in) << "Input should be MKLDNNMatrix";
  } else {
    CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet";
    const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE);
    in = MKLDNNMatrix::create(
        cpuIn, {bs_, ic_, ih_, iw_}, format::nchw, engine_);
  }
}
T
tensor-tang 已提交
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
void MKLDNNPoolLayer::resetOutValue(MKLDNNMatrixPtr& out) {
  CHECK(inVal_) << "Should reset input value first";
  memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
  out = MKLDNNMatrix::create(
      output_.value, outDims, inVal_->getFormat(), engine_);

  // create reorder if output value has cpu device and pd do not match
  cpuOutVal_ = nullptr;
  cvtOutVal_ = nullptr;
  if (!outputIsOnlyMKLDNN()) {
    const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value;
    cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_);
    if (cpuOutVal_->getPrimitiveDesc() != out->getPrimitiveDesc()) {
      cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_);
      CHECK(cvtOutVal_) << "should not be emptry";
    } else {
      // CPU output share the same data of MKLDNN output
      cpuOut->setData(out->getData());
      cpuOutVal_ = out;
    }
  }
}
T
tensor-tang 已提交
154 155 156

void MKLDNNPoolLayer::resetFwdPD(std::shared_ptr<pool_fwd::primitive_desc>& pd,
                                 MKLDNNMatrixPtr in,
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
                                 MKLDNNMatrixPtr out) {
  memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
  memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
  memory::dims kernels = memory::dims{fh_, fw_};
  memory::dims strides = memory::dims{sh_, sw_};
  memory::dims padL = memory::dims{ph_, pw_};
  memory::dims padR = getPaddingR();
  padding_kind padKind = padding_kind::zero;
  prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring
                                        : prop_kind::forward_training;
  auto fwdDesc = pool_fwd::desc(pk,
                                poolAlgo_,
                                in->getMemoryDesc(),
                                out->getMemoryDesc(),
                                strides,
                                kernels,
                                padL,
                                padR,
                                padKind);
  pd.reset(new pool_fwd::primitive_desc(fwdDesc, engine_));

  // prepare workspace if necessary
  workspace_ =
      (passType_ != PASS_TEST && poolAlgo_ == algorithm::pooling_max)
          ? std::make_shared<memory>(memory(pd->workspace_primitive_desc()))
          : nullptr;
}
T
tensor-tang 已提交
184 185

void MKLDNNPoolLayer::resetFwdPipeline(
186
    std::vector<primitive>& pipeline,
T
tensor-tang 已提交
187 188
    std::shared_ptr<pool_fwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
189 190 191 192 193 194 195 196 197 198
    MKLDNNMatrixPtr& out) {
  fwd_ = workspace_
             ? std::make_shared<pool_fwd>(pool_fwd(*pd, *in, *out, *workspace_))
             : std::make_shared<pool_fwd>(pool_fwd(*pd, *in, *out));
  pipeline.push_back(*fwd_);

  if (cvtOutVal_) {
    pipeline.push_back(*cvtOutVal_);
  }
}
T
tensor-tang 已提交
199 200 201 202

void MKLDNNPoolLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
                                      MKLDNNMatrixPtr& out) {
  resetOutGrad(out);
203

T
tensor-tang 已提交
204 205
  resetInGrad(in);
}
206 207 208
void MKLDNNPoolLayer::resetOutGrad(MKLDNNMatrixPtr& out) {
  cpuOutGrad_ = nullptr;
  cvtOutGrad_ = nullptr;
T
tensor-tang 已提交
209 210 211 212
  CHECK(outVal_);
  if (outputIsOnlyMKLDNN()) {
    MKLDNNLayer::resetOutGrad(out, outVal_->getPrimitiveDesc());
  } else {
213 214 215
    const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad;
    cpuOutGrad_ = MKLDNNMatrix::create(
        cpuOut, memory::dims{bs_, oc_, oh_, ow_}, format::nchw, engine_);
T
tensor-tang 已提交
216 217
    if (cpuOutGrad_->getPrimitiveDesc() != outVal_->getPrimitiveDesc()) {
      out = MKLDNNMatrix::create(output_.grad, outVal_->getPrimitiveDesc());
218 219 220 221 222 223 224 225 226
      cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out);
      CHECK(cvtOutGrad_) << "should not be emptry";
    } else {
      // share the same data of CPU output
      output_.grad->setData(cpuOut->getData());
      out = cpuOutGrad_;
    }
  }
}
T
tensor-tang 已提交
227

228 229
void MKLDNNPoolLayer::resetInGrad(MKLDNNMatrixPtr& in) {
  in = nullptr;
T
tensor-tang 已提交
230
  if (inputLayers_[0]->getOutput().grad == nullptr) {
231 232 233
    return;
  }
  CHECK(inVal_);
T
tensor-tang 已提交
234
  MKLDNNLayer::resetInGrad(in, inVal_->getPrimitiveDesc());
235
}
T
tensor-tang 已提交
236 237 238

void MKLDNNPoolLayer::resetBwdPD(std::shared_ptr<pool_bwd::primitive_desc>& pd,
                                 MKLDNNMatrixPtr& in,
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
                                 MKLDNNMatrixPtr& out) {
  memory::dims kernels = memory::dims{fh_, fw_};
  memory::dims strides = memory::dims{sh_, sw_};
  memory::dims padL = memory::dims{ph_, pw_};
  memory::dims padR = getPaddingR();
  CHECK(in);
  CHECK(out);
  auto bwdDesc = pool_bwd::desc(poolAlgo_,
                                in->getMemoryDesc(),
                                out->getMemoryDesc(),
                                strides,
                                kernels,
                                padL,
                                padR,
                                padding_kind::zero);
  pd.reset(new pool_bwd::primitive_desc(bwdDesc, engine_, *fwdPD_));
}
T
tensor-tang 已提交
256 257

void MKLDNNPoolLayer::resetBwdPipeline(
258
    std::vector<primitive>& pipeline,
T
tensor-tang 已提交
259 260
    std::shared_ptr<pool_bwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
261 262 263 264 265 266 267 268 269 270 271
    MKLDNNMatrixPtr& out) {
  if (cvtOutGrad_) {
    pipeline.push_back(*cvtOutGrad_);
  }

  bwdData_ =
      workspace_
          ? std::make_shared<pool_bwd>(pool_bwd(*pd, *out, *workspace_, *in))
          : std::make_shared<pool_bwd>(pool_bwd(*pd, *out, *in));
  pipeline.push_back(*bwdData_);
}
T
tensor-tang 已提交
272 273

}  // namespace paddle