operation.cc 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/ir/fusion_group/operation.h"
16
#include "paddle/fluid/framework/operator.h"
17 18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace framework {
namespace ir {
namespace fusion_group {

OperationMap* OperationMap::map = nullptr;

OperationMap::OperationMap() {
  InsertUnaryElementwiseOperations();
  InsertBinaryElementwiseOperations();
28
  InsertMultivariateElementwiseOperations();
29 30
}

31
std::unordered_set<std::string> OperationMap::Find(int type) {
32 33
  std::unordered_set<std::string> res;
  for (auto& t : operations_) {
34
    if (t.second.type == type) {
35 36 37 38 39 40 41
      res.insert(t.first);
    }
  }
  return res;
}

void OperationMap::Insert(int type, int num_operands, std::string op_type,
42 43 44 45
                          std::string expr, std::vector<std::string> grad_exprs,
                          std::vector<std::string> input_names,
                          std::vector<std::string> output_names) {
  Operation op(type, num_operands, op_type, {expr}, input_names, output_names);
46 47 48 49 50
  PADDLE_ENFORCE_EQ(op.IsValid(), true,
                    platform::errors::InvalidArgument(
                        "Operation %s is invalid. Please set correct "
                        "expression for forward calculation.",
                        op_type));
51 52 53 54
  operations_[op_type] = op;

  if (grad_exprs.size() > 0U) {
    std::string grad_op_type = op_type + "_grad";
55 56
    // grad_inputs = inputs + outputs + grad of outputs
    std::vector<std::string> grad_input_names = input_names;
57

58 59 60 61 62 63 64 65 66 67 68 69 70
    for (auto name : output_names) {
      grad_input_names.push_back(name);
    }
    for (auto name : output_names) {
      grad_input_names.push_back(GradVarName(name));
    }
    // grad_output = grad of inputs
    std::vector<std::string> grad_output_names;
    for (auto name : input_names) {
      grad_output_names.push_back(GradVarName(name));
    }
    Operation grad_op(type, num_operands, grad_op_type, grad_exprs,
                      grad_input_names, grad_output_names);
71 72 73 74 75
    PADDLE_ENFORCE_EQ(grad_op.IsValid(), true,
                      platform::errors::InvalidArgument(
                          "Operation %s is invalid. Please set correct "
                          "expression for backward calculation.",
                          grad_op_type));
76 77 78 79 80 81 82 83 84
    operations_[grad_op_type] = grad_op;
  }
}

void OperationMap::InsertUnaryElementwiseOperations() {
  // For unary elementwise operations:
  //  ${0} - x
  //  ${1} - out
  //  ${2} - dout
85 86 87 88 89 90
  auto insert_handler = [&](std::string op_type, std::string expr,
                            std::vector<std::string> grad_exprs) {
    int type = 0;
    int num_oprands = 1;
    Insert(type, num_oprands, op_type, expr, grad_exprs, {"X"}, {"Out"});
  };
91 92 93

  // relu:
  //  out = f(x) = x > 0 ? x : 0
94
  //  dx = dout * (out > 0 ? 1 : 0)
95 96
  insert_handler("relu", "${0} > %{0} ? ${0} : %{0.0}",
                 {"${1} > %{0.0} ? ${2} : %{0.0}"});
97 98 99
  // sigmoid:
  //  out = f(x) = 1.0 / (1.0 + exp(-x))
  //  dx = dout * out * (1 - out)
100 101
  insert_handler("sigmoid", "%{1.0} / (%{1.0} + Exp(- ${0}))",
                 {"${2} * ${1} * (%{1.0} - ${1})"});
102 103 104
  // tanh:
  //  out = f(x) = 2.0 / (1.0 + exp(-2.0 * x)) - 1.0;
  //  dx = dout * (1 - out * out)
105 106
  insert_handler("tanh", "%{2.0} / (%{1.0} + Exp(-%{2.0} * ${0})) - %{1.0}",
                 {"${2} * (%{1.0} - ${1} * ${1})"});
107

108 109
  // cast:
  // out = static_cast<T>(x)
110 111
  // TODO(wangchaochaohu): This is not the compelete definition of
  // cast Op, We need refine it later.
112 113 114 115 116
  insert_handler("cast", "${0}", {});

  // sqrt:
  //  out = x^(1/2)
  //  dx = dout * 0.5 / out
117
  insert_handler("sqrt", "Sqrt(${0})", {"${2} * %{0.5} / ${1}"});
118 119 120 121

  // square:
  //  out = x^2
  //  dx = dout * 2.0 * x
122
  insert_handler("square", "${0} * ${0}", {"${2} * %{2.0} * ${0}"});
123 124 125 126 127 128

  // scale
  // out = (bias_after_scale) ? scale * X +  bias : scale(X + bias)
  // here we use '=' operator to seperate th default value
  // TODO(wangchaochaohu): Later we need to support Tensor input for scale and
  // bias.
129 130 131 132 133
  insert_handler(
      "scale",
      "${bias_after_scale=true} ? (${scale=%{1.0}} * ${0} + "
      "${bias=%{0.0}}) : (${scale=%{1.0}} * (${0} + ${bias=%{0.0}}))",
      {});
134 135 136 137 138 139 140 141
}

void OperationMap::InsertBinaryElementwiseOperations() {
  // For binary elementwise oprations:
  //  ${0} - x
  //  ${1} - y
  //  ${2} - out
  //  ${3} - dout
142 143 144 145 146 147
  auto insert_handler = [&](std::string op_type, std::string expr,
                            std::vector<std::string> grad_exprs) {
    int type = 0;
    int num_oprands = 2;
    Insert(type, num_oprands, op_type, expr, grad_exprs, {"X", "Y"}, {"Out"});
  };
148 149 150 151 152

  // elementwise_add:
  //  out = x + y
  //  dx = dout * 1
  //  dy = dout * 1
153
  insert_handler("elementwise_add", "${0} + ${1}", {"${3}", "${3}"});
154 155 156 157
  // elementwise_sub:
  //  out = x - y
  //  dx = dout * 1
  //  dy = dout * (-1)
158
  insert_handler("elementwise_sub", "${0} - ${1}", {"${3}", "- ${3}"});
159 160 161 162
  // elementwise_mul:
  //  out = x * y
  //  dx = dout * y
  //  dy = dout * x
163 164
  insert_handler("elementwise_mul", "${0} * ${1}",
                 {"${3} * ${1}", "${3} * ${0}"});
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  // elementwise_div:
  //  out = x / y
  //  dx = dout / y
  //  dy = - dout * out / y
  insert_handler("elementwise_div", "${0} / ${1}",
                 {"${3} / ${1}", "- ${3} * ${2} / ${1}"});
  // elementwise_min:
  //  out = x < y ? x : y
  //  dx = dout * (x < y)
  //  dy = dout * (x >= y)
  insert_handler("elementwise_min", "${0} < ${1} ? ${0} : ${1}",
                 {"${3} * (${0} < ${1})", "${3} * (${0} >= ${1})"});
  // elementwise_max:
  //  out = x > y ? x : y
  //  dx = dout * (x > y)
  //  dy = dout * (x <= y)
  insert_handler("elementwise_max", "${0} > ${1} ? ${0} : ${1}",
                 {"${3} * (${0} > ${1})", "${3} * (${0} <= ${1})"});
183 184
}

185 186 187 188 189 190 191 192
void OperationMap::InsertMultivariateElementwiseOperations() {
  auto insert_handler = [&](std::string op_type, std::string expr,
                            std::vector<std::string> grad_exprs) {
    int type = 0;
    int num_oprands = -1;
    Insert(type, num_oprands, op_type, expr, grad_exprs, {"X"}, {"Out"});
  };

193 194 195 196 197 198 199
  // sum:
  //  out = x_0 + x_1 + ... + x_N-1
  //
  // For sum with N inputs, the expression inside "[]" will be expanded
  //  N - 1 times. The ${?} represents the number of inputs starting with is 1.
  // For example, sum with 4 inputs, the expanded expression is:
  //  ${0} + ${1} + ${2} + ${3}
200
  insert_handler("sum", "${0}[ + ${?}]", {});
201 202 203 204

  auto insert_handler_without_input = [&](std::string op_type, std::string expr,
                                          std::vector<std::string> grad_exprs) {
    int type = 0;
205
    int num_oprands = 0;
206 207 208 209
    Insert(type, num_oprands, op_type, expr, grad_exprs, {}, {"Out"});
  };
  // fill_constant:
  insert_handler_without_input("fill_constant", "${str_value}", {});
210 211
}

212 213 214 215
}  // namespace fusion_group
}  // namespace ir
}  // namespace framework
}  // namespace paddle