operation.cc 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/ir/fusion_group/operation.h"
16
#include "paddle/fluid/framework/operator.h"
17 18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace framework {
namespace ir {
namespace fusion_group {

OperationMap* OperationMap::map = nullptr;

OperationMap::OperationMap() {
  InsertUnaryElementwiseOperations();
  InsertBinaryElementwiseOperations();
28
  InsertMultivariateElementwiseOperations();
29 30
}

31
std::unordered_set<std::string> OperationMap::Find(int type) {
32 33
  std::unordered_set<std::string> res;
  for (auto& t : operations_) {
34
    if (t.second.type == type) {
35 36 37 38 39 40 41
      res.insert(t.first);
    }
  }
  return res;
}

void OperationMap::Insert(int type, int num_operands, std::string op_type,
42 43 44 45
                          std::string expr, std::vector<std::string> grad_exprs,
                          std::vector<std::string> input_names,
                          std::vector<std::string> output_names) {
  Operation op(type, num_operands, op_type, {expr}, input_names, output_names);
46 47 48 49 50
  PADDLE_ENFORCE_EQ(op.IsValid(), true,
                    platform::errors::InvalidArgument(
                        "Operation %s is invalid. Please set correct "
                        "expression for forward calculation.",
                        op_type));
51 52 53 54
  operations_[op_type] = op;

  if (grad_exprs.size() > 0U) {
    std::string grad_op_type = op_type + "_grad";
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    // grad_inputs = inputs + outputs + grad of outputs
    std::vector<std::string> grad_input_names = input_names;
    for (auto name : output_names) {
      grad_input_names.push_back(name);
    }
    for (auto name : output_names) {
      grad_input_names.push_back(GradVarName(name));
    }
    // grad_output = grad of inputs
    std::vector<std::string> grad_output_names;
    for (auto name : input_names) {
      grad_output_names.push_back(GradVarName(name));
    }
    Operation grad_op(type, num_operands, grad_op_type, grad_exprs,
                      grad_input_names, grad_output_names);
70 71 72 73 74
    PADDLE_ENFORCE_EQ(grad_op.IsValid(), true,
                      platform::errors::InvalidArgument(
                          "Operation %s is invalid. Please set correct "
                          "expression for backward calculation.",
                          grad_op_type));
75 76 77 78 79 80 81 82 83
    operations_[grad_op_type] = grad_op;
  }
}

void OperationMap::InsertUnaryElementwiseOperations() {
  // For unary elementwise operations:
  //  ${0} - x
  //  ${1} - out
  //  ${2} - dout
84 85 86 87 88 89
  auto insert_handler = [&](std::string op_type, std::string expr,
                            std::vector<std::string> grad_exprs) {
    int type = 0;
    int num_oprands = 1;
    Insert(type, num_oprands, op_type, expr, grad_exprs, {"X"}, {"Out"});
  };
90 91 92

  // relu:
  //  out = f(x) = x > 0 ? x : 0
93
  //  dx = dout * (out > 0 ? 1 : 0)
94
  insert_handler("relu", "${0} > 0 ? ${0} : 0", {"${1} > 0 ? ${2} : 0"});
95 96 97
  // sigmoid:
  //  out = f(x) = 1.0 / (1.0 + exp(-x))
  //  dx = dout * out * (1 - out)
98
  insert_handler("sigmoid", "1.0 / (1.0 + Exp(- ${0}))",
99
                 {"${2} * ${1} * (1.0 - ${1})"});
100 101 102
  // tanh:
  //  out = f(x) = 2.0 / (1.0 + exp(-2.0 * x)) - 1.0;
  //  dx = dout * (1 - out * out)
103
  insert_handler("tanh", "2.0 / (1.0 + Exp(-2.0 * ${0})) - 1.0",
104
                 {"${2} * (1.0 - ${1} * ${1})"});
105

106 107
  // cast:
  // out = static_cast<T>(x)
108 109
  // TODO(wangchaochaohu): This is not the compelete definition of
  // cast Op, We need refine it later.
110 111 112 113 114 115 116 117 118 119 120
  insert_handler("cast", "${0}", {});

  // sqrt:
  //  out = x^(1/2)
  //  dx = dout * 0.5 / out
  insert_handler("sqrt", "Sqrt(${0})", {"${2} * 0.5 / ${1}"});

  // square:
  //  out = x^2
  //  dx = dout * 2.0 * x
  insert_handler("square", "${0} * ${0}", {"${2} * 2.0 * ${0}"});
121 122 123 124 125 126 127 128 129 130

  // scale
  // out = (bias_after_scale) ? scale * X +  bias : scale(X + bias)
  // here we use '=' operator to seperate th default value
  // TODO(wangchaochaohu): Later we need to support Tensor input for scale and
  // bias.
  insert_handler("scale",
                 "${bias_after_scale=true} ? (${scale=1.0} * ${0} + "
                 "${bias=0.0}) : (${scale=1.0} * (${0} + ${bias=0.0}))",
                 {});
131 132 133 134 135 136 137 138
}

void OperationMap::InsertBinaryElementwiseOperations() {
  // For binary elementwise oprations:
  //  ${0} - x
  //  ${1} - y
  //  ${2} - out
  //  ${3} - dout
139 140 141 142 143 144
  auto insert_handler = [&](std::string op_type, std::string expr,
                            std::vector<std::string> grad_exprs) {
    int type = 0;
    int num_oprands = 2;
    Insert(type, num_oprands, op_type, expr, grad_exprs, {"X", "Y"}, {"Out"});
  };
145 146 147 148 149

  // elementwise_add:
  //  out = x + y
  //  dx = dout * 1
  //  dy = dout * 1
150
  insert_handler("elementwise_add", "${0} + ${1}", {"${3}", "${3}"});
151 152 153 154
  // elementwise_sub:
  //  out = x - y
  //  dx = dout * 1
  //  dy = dout * (-1)
155
  insert_handler("elementwise_sub", "${0} - ${1}", {"${3}", "- ${3}"});
156 157 158 159
  // elementwise_mul:
  //  out = x * y
  //  dx = dout * y
  //  dy = dout * x
160 161
  insert_handler("elementwise_mul", "${0} * ${1}",
                 {"${3} * ${1}", "${3} * ${0}"});
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  // elementwise_div:
  //  out = x / y
  //  dx = dout / y
  //  dy = - dout * out / y
  insert_handler("elementwise_div", "${0} / ${1}",
                 {"${3} / ${1}", "- ${3} * ${2} / ${1}"});
  // elementwise_min:
  //  out = x < y ? x : y
  //  dx = dout * (x < y)
  //  dy = dout * (x >= y)
  insert_handler("elementwise_min", "${0} < ${1} ? ${0} : ${1}",
                 {"${3} * (${0} < ${1})", "${3} * (${0} >= ${1})"});
  // elementwise_max:
  //  out = x > y ? x : y
  //  dx = dout * (x > y)
  //  dy = dout * (x <= y)
  insert_handler("elementwise_max", "${0} > ${1} ? ${0} : ${1}",
                 {"${3} * (${0} > ${1})", "${3} * (${0} <= ${1})"});
180 181
}

182 183 184 185 186 187 188 189
void OperationMap::InsertMultivariateElementwiseOperations() {
  auto insert_handler = [&](std::string op_type, std::string expr,
                            std::vector<std::string> grad_exprs) {
    int type = 0;
    int num_oprands = -1;
    Insert(type, num_oprands, op_type, expr, grad_exprs, {"X"}, {"Out"});
  };

190 191 192 193 194 195 196
  // sum:
  //  out = x_0 + x_1 + ... + x_N-1
  //
  // For sum with N inputs, the expression inside "[]" will be expanded
  //  N - 1 times. The ${?} represents the number of inputs starting with is 1.
  // For example, sum with 4 inputs, the expanded expression is:
  //  ${0} + ${1} + ${2} + ${3}
197
  insert_handler("sum", "${0}[ + ${?}]", {});
198 199 200 201 202 203 204 205 206

  auto insert_handler_without_input = [&](std::string op_type, std::string expr,
                                          std::vector<std::string> grad_exprs) {
    int type = 0;
    int num_oprands = -1;
    Insert(type, num_oprands, op_type, expr, grad_exprs, {}, {"Out"});
  };
  // fill_constant:
  insert_handler_without_input("fill_constant", "${str_value}", {});
207 208
}

209 210 211 212
}  // namespace fusion_group
}  // namespace ir
}  // namespace framework
}  // namespace paddle