quantization_pass.py 28.1 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import Program
W
WangZhen 已提交
21 22 23
from ....initializer import Constant
from .... import unique_name

24 25 26 27
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
    'TransformForMobilePass'
]
W
WangZhen 已提交
28

W
WangZhen 已提交
29

30
class QuantizationTransformPass(object):
W
WangZhen 已提交
31
    def __init__(self,
32 33
                 scope=None,
                 program_exe=None,
W
WangZhen 已提交
34 35 36 37 38 39
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
                 window_size=10000):
        """
40
        Convert and rewrite the IrGraph according to weight and
W
WangZhen 已提交
41
        activation quantization type.
42

W
WangZhen 已提交
43
        Args:
44 45 46 47 48
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
            type, this pass will create some new parameters. The scope is used to
            initialize these new parameters.
            program_exe(fluid.Executor): program_exe is used to initialize new
            parameters described above.
W
WangZhen 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61
            weight_bits (int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits (int): quantization bit number for activation.
            activation_quantize_type (str): quantization type for activation,
                now support 'abs_max', 'range_abs_max'. If use 'abs_max' mode,
                the quantization scale will be calculated dynamically each step
                in both training and testing period. If use 'range_abs_max',
                a static quantization scale will be calculated during training
                and used in inference.
            weight_quantize_type (str): quantization type for weights,
                support 'abs_max'. The 'range_abs_max' usually is not used for
                weight, since weights are fixed once the model is well trained.
            window_size (int): the window size for 'range_abs_max' quantization.
62

W
WangZhen 已提交
63 64
        Examples:
        .. code-block:: python
65 66 67 68
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
69
            from paddle.fluid.contrib.slim.graph import IrGraph
70 71
            from paddle.fluid import core

72
            graph = IrGraph(core.Graph(program.desc), for_test=False)
73 74 75 76
            exe = fluid.Executor(fluid.CPUPlace())
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
            exe)
            transform_pass.apply(graph)
W
WangZhen 已提交
77
        """
78 79 80 81
        self._scope = scope
        self._program_exe = program_exe
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
W
WangZhen 已提交
82 83 84 85 86 87 88 89 90 91 92

        quant_type = ['abs_max', 'range_abs_max']
        if activation_quantize_type not in quant_type:
            raise ValueError(
                "Unknown activation_quantize_type : '%s'. It can only be ",
                "'abs_max' or 'range_abs_max'.", str(activation_quantize_type))
        if weight_quantize_type not in quant_type:
            raise ValueError(
                "Unknown weight_quantize_type: '%s'. It can only be ",
                "'abs_max' or 'range_abs_max'.", str(weight_quantize_type))

93 94 95
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
W
WangZhen 已提交
96

97 98 99 100
        self._need_initialized = collections.OrderedDict()
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
101
        ]
102 103
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
104

105
    def apply(self, graph):
106 107 108 109 110 111 112 113
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
        """
W
WangZhen 已提交
114
        assert isinstance(graph,
115 116 117
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._need_initialized.clear()
        self._is_test = graph.is_test()
W
WangZhen 已提交
118 119
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
W
WangZhen 已提交
120
        persistable_vars = [p.name() for p in graph.all_persistable_vars()]
W
WangZhen 已提交
121 122 123 124 125 126

        def _transform_forward(graph, op):
            for var_node in op.inputs:
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
W
WangZhen 已提交
127
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
128 129
                    else self._activation_bits
                    quant_type = self._weight_quantize_type if var_node.name() \
W
WangZhen 已提交
130
                        in persistable_vars else self._activation_quantize_type
W
WangZhen 已提交
131 132 133 134 135
                    quant_var_node, scale_var_node = self._insert_quant_op(
                        graph, var_node, quant_bits, quant_type)
                    dequant_var_node = self._insert_dequant_op(
                        graph, quant_var_node, scale_var_node, quant_bits)
                    dequantized_vars[var_node.name()] = dequant_var_node
136
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
137 138 139 140 141 142

        def _transform_backward(graph, op):
            no_dequanted_input_vars = True
            for var_node in op.inputs:
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
143
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
144 145 146 147
                    no_dequanted_input_vars = False
            if no_dequanted_input_vars:
                raise ValueError("There is no dequanted inputs for op %s." %
                                 (op.name()))
W
WangZhen 已提交
148

149
        if not self._is_test:
W
WangZhen 已提交
150 151
            self._create_global_step(graph)
        ops = graph.all_ops()
W
WangZhen 已提交
152 153
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
154
        for op in ops:
155
            if op.name() in self._quantizable_ops:
W
WangZhen 已提交
156
                _transform_forward(graph, op)
W
WangZhen 已提交
157 158
        # The loop for renaming the inputs of backward op.
        for op in ops:
159
            if op.name() in self._quantizable_grad_ops:
W
WangZhen 已提交
160
                _transform_backward(graph, op)
W
WangZhen 已提交
161

162 163
        if len(self._need_initialized) > 0:
            assert self._scope is not None, \
164
            'The scope cannot be set None when activation_quantize_type equals to range_abs_max.'
165
            assert self._program_exe is not None, \
166 167
            'The program_exe cannot be set None when activation_quantize_type equals to range_abs_max.'
            init_program = Program()
168
            for var_desc, initializer in self._need_initialized.iteritems():
W
WangZhen 已提交
169 170 171 172 173 174 175
                var = init_program.global_block().create_var(
                    name=var_desc.name(),
                    shape=var_desc.shape(),
                    dtype=var_desc.dtype(),
                    type=var_desc.type(),
                    lod_level=var_desc.lod_level(),
                    persistable=var_desc.persistable())
176
                initializer(var, init_program.global_block())
177
            self._program_exe.run(program=init_program, scope=self._scope)
178 179

        return graph
W
WangZhen 已提交
180

W
WangZhen 已提交
181
    def _create_global_step(self, graph):
182 183
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
184
            counter_name = cpt.to_text('@STEP_COUNTER@')
W
WangZhen 已提交
185 186
            for node in graph.all_vars():
                if node.name() == counter_name:
187 188
                    self._global_step = node
            if self._global_step is None:
W
WangZhen 已提交
189 190 191 192 193
                global_step_in = graph.create_param_node(
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
194
                self._need_initialized[global_step_in.var()] = \
W
WangZhen 已提交
195 196 197
                    Constant(value=0, force_cpu=True)
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
198
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
199 200
                increment_op = graph.create_op_node(
                    op_type='increment',
201 202 203 204 205
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
206 207
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
208 209 210
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
211

W
WangZhen 已提交
212 213 214 215 216 217 218
    def _insert_quant_op(self, graph, var_node, quant_bits, quant_type):
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
            return self._insert_quant_abs_max_op(graph, var_node, quant_bits)
        elif quant_type == 'range_abs_max':
W
WangZhen 已提交
219 220
            return self._insert_quant_range_abs_max_op(graph, var_node,
                                                       quant_bits)
W
WangZhen 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

    def _insert_quant_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
240 241 242 243
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
244 245 246
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
247 248 249
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        return quant_var_node, scale_var_node

    def _insert_quant_range_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())

        scale_in_node = graph.create_param_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.var().dtype())
269
        self._need_initialized[scale_in_node.var()] = Constant(value=0.001)
W
WangZhen 已提交
270 271 272 273 274

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

275
        if not self._is_test:
W
WangZhen 已提交
276 277 278 279
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
            scales_node = graph.create_param_node(
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
280
                shape=[self._window_size],
W
WangZhen 已提交
281
                var_dtype=var_node.var().dtype())
282 283
            self._need_initialized[scales_node.var()] = Constant(value=0)
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
284 285
            outputs['OutScales'] = scales_node
        attrs = {
286
            'window_size': self._window_size,
W
WangZhen 已提交
287
            'bit_length': quant_bits,
288 289
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
290 291 292 293 294 295 296
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

297 298 299 300
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
301

302 303 304
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

        return quant_var_node, scale_out_node

    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=var_node.var().dtype())
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
322 323 324 325
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
326 327 328
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
329 330 331
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
        return dequant_var_node

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
348
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
349 350
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
351 352 353


class QuantizationFreezePass(object):
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    """
    The freeze pass is used to adjust the quantize operator order, for example:
        1) `activation -> quant -> dequant -> conv2d` will be freezed into
        `activation -> quant -> conv2d -> dequant`
        2) `weight -> quant -> dequant -> conv2d` will be freezed into `weight -> conv2d`,
        and weight will be sacled offline.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the weight tensors.
        weight_bits (int): quantization bit number for weights.
        activation_bits (int): quantization bit number for activation.
        weight_quantize_type (str): quantization type for weights, support 'abs_max'.
        The 'range_abs_max' usually is not used for weight, since weights are fixed once the
        model is well trained.
    """

W
WangZhen 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    def __init__(self,
                 scope,
                 place,
                 weight_bits=8,
                 activation_bits=8,
                 weight_quantize_type='abs_max'):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
        self._fake_quant_op_names = [
            'fake_quantize_abs_max', 'fake_quantize_range_abs_max'
        ]
        self._fake_dequant_op_names = ['fake_dequantize_max_abs']
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
        self._var_scale_map = collections.OrderedDict()

    def apply(self, graph):
396 397 398 399 400 401
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
        """
W
WangZhen 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
        persistable_vars = [p.name() for p in graph.all_persistable_vars()]
        ops = graph.all_ops()
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
                input_arg_name = op_node.op().input('X')[0]
                if input_arg_name in persistable_vars:
                    if self._weight_quantize_type == 'abs_max':
                        param = self._load_var(input_arg_name)
                        scale_v = np.max(np.abs(param))
                    else:
                        scale_v = self._load_var(op_node.op().output('OutScale')
                                                 [0])[0]
                    self._var_scale_map[input_arg_name] = scale_v
                else:
                    scale_v = graph.var_node(op_node.op().output('OutScale')[0])
                    self._var_scale_map[input_arg_name] = scale_v
                if input_arg_name in persistable_vars:
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
                    # quantize weight and restore
                    param_v = self._load_var(input_arg_name)
                    quantized_param_v = self._quant(param_v, scale_v,
W
WangZhen 已提交
424
                                                    self._weight_bits)
W
WangZhen 已提交
425 426
                    self._restore_var(input_arg_name, quantized_param_v)

W
WangZhen 已提交
427
        ops = graph.all_ops()
W
WangZhen 已提交
428 429 430 431 432
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

W
WangZhen 已提交
433
        ops = graph.all_ops()
W
WangZhen 已提交
434 435 436 437 438 439 440 441 442 443 444
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
                self._insert_post_dequant_op(graph, op_node)

        for op_node in ops:
            # insert dequant_op after fc/conv, need to rename inputs of the followed ops
            for var_node in op_node.inputs:
                name = var_node.name()
                if name in self._op_output_rename_map:
                    old_in = graph.var_node(name)
W
WangZhen 已提交
445
                    new_in = self._op_output_rename_map[name]
W
WangZhen 已提交
446 447 448 449
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
450
        return graph
W
WangZhen 已提交
451 452 453 454 455 456 457 458

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
        k = op_node.op().output('Out')[0]
        v = op_node.op().input('X')[0]
        if v not in self._op_input_rename_map:
            self._op_input_rename_map[k] = v
        else:
            self._op_input_rename_map[k] = self._op_input_rename_map[v]
W
WangZhen 已提交
459
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
460 461 462 463 464

    def _insert_post_dequant_op(self, graph, op_node):
        max_range = None
        scale_var_node = None
        persistable_vars = [p.name() for p in graph.all_persistable_vars()]
W
WangZhen 已提交
465
        for var_node in op_node.inputs:
W
WangZhen 已提交
466 467 468 469
            name = var_node.name()
            if name in self._op_input_rename_map:
                old_in = graph.var_node(name)
                new_in = graph.var_node(self._op_input_rename_map[name])
W
WangZhen 已提交
470
                new_in.clear_outputs()
W
WangZhen 已提交
471 472
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
W
WangZhen 已提交
473
            scale_v = self._var_scale_map[original_var_name]
W
WangZhen 已提交
474 475 476 477 478 479 480 481 482 483 484
            if original_var_name in persistable_vars:
                param_range = (1 << (self._weight_bits - 1)) - 1
                act_range = (1 << (self._activation_bits - 1)) - 1
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
                max_range = param_range * act_range / scale_v
            else:
                assert isinstance(scale_v, core.Node)
                scale_var_node = self._var_scale_map[original_var_name]

W
WangZhen 已提交
485
        if len(op_node.outputs) != 1:
W
WangZhen 已提交
486 487 488
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

W
WangZhen 已提交
489
        output_var_node = op_node.outputs[0]
W
WangZhen 已提交
490 491 492 493 494 495 496
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.var().type(),
            shape=output_var_node.var().shape(),
            var_dtype=output_var_node.var().dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
497 498 499 500
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
501 502 503 504 505 506
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
507
        self._op_output_rename_map[output_var_node.name()] = dequant_var_node
W
WangZhen 已提交
508 509 510 511 512
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

513 514 515
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
        ops = graph.all_ops()
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

        all_unused_vars = graph.all_vars() - all_used_vars
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
550
    def _is_float(self, v):
W
WangZhen 已提交
551 552 553
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

W
WangZhen 已提交
554
    def _quant(self, x, scale, num_bits):
W
WangZhen 已提交
555
        return np.round(x / scale * ((1 << (num_bits - 1)) - 1))
556 557 558


class ConvertToInt8Pass(object):
559 560 561 562 563 564 565 566 567
    """
    Convert the weights into int8_t type.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
        8bits weight tensors.
    """

568 569 570 571 572 573 574 575 576 577
    def __init__(self, scope, place):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']

    def apply(self, graph):
578 579 580 581 582 583 584
        """
        Convert weights' tpye of the graph. After that, the data type of the
        graph weigths is int8_t.

        Args:
            graph(IrGraph): the applied graph.
        """
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
        persistable_vars = [p.name() for p in graph.all_persistable_vars()]
        ops = graph.all_ops()
        input_map = {}
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
        int8_var_node = graph.create_param_node(
            name=cpt.to_text(int8_var_node_name),
            var_type=var_node.var().type(),
            shape=var_node.var().shape(),
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
        ops = graph.all_ops()
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

        all_unused_vars = graph.all_vars() - all_used_vars
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
638 639 640 641
    """
    This pass is used to convert the freezed graph for paddle-mobile execution.
    """

642 643 644 645 646 647 648
    def __init__(self):
        self._fake_quant_op_names = [
            'fake_quantize_abs_max', 'fake_quantize_range_abs_max'
        ]
        self._fake_dequant_op_names = ['fake_dequantize_max_abs']

    def apply(self, graph):
649 650 651 652 653 654 655 656
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
        """
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
        ops = graph.all_ops()
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
                op_node.op().set_type('quantize')
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
                op_node.op().set_type('dequantize')
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)

        return graph