layers.py 184.0 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
16
import collections
Y
Yu Yang 已提交
17
import inspect
Z
zhangjinchao01 已提交
18 19 20

from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22 23 24 25
from .evaluators import *
from .poolings import MaxPooling, AvgPooling, BasePoolingType
from .attrs import *
from .default_decorators import *
26

Z
zhangjinchao01 已提交
27 28 29 30 31 32
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
33
__all__ = [
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
    'mse_cost',
    'regression_cost',
Q
qijun 已提交
57
    'classification_cost',
58
    'LayerOutput',
Q
qijun 已提交
59
    'img_conv_layer',
60
    'img_depthwise_conv_layer',
Q
qijun 已提交
61 62 63 64 65
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
66
    'seq_concat_layer',
Q
qijun 已提交
67 68 69 70 71 72
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
73
    'scaling_projection',
Q
qijun 已提交
74 75 76 77
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
78
    'rotate_layer',
Q
qijun 已提交
79 80 81 82 83 84 85 86 87
    'sum_to_one_norm_layer',
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
88
    'gru_step_naive_layer',
Q
qijun 已提交
89 90 91 92 93 94 95 96 97 98 99 100
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
101
    'warp_ctc_layer',
Q
qijun 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
    'huber_cost',
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
X
xuwei06 已提交
115
    'printer_layer',
Q
qijun 已提交
116
    'print_layer',
Y
yuan 已提交
117
    'priorbox_layer',
118
    'cross_channel_norm_layer',
Q
qijun 已提交
119
    'spp_layer',
D
dangqingqing 已提交
120
    'pad_layer',
L
Luo Tao 已提交
121
    'eos_layer',
122
    'smooth_l1_cost',
123
    'layer_support',
W
wwhu 已提交
124
    'multiplex_layer',
D
dangqingqing 已提交
125
    'row_conv_layer',
126
    'dropout_layer',
127
    'prelu_layer',
Q
qijun 已提交
128
]
Z
zhangjinchao01 已提交
129 130 131 132 133 134 135


class LayerType(object):
    """
    Layer type enumerations.
    """

136 137 138 139 140 141 142 143
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
144
    POOLING_AVG = 'average'
145
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
146
    COST = 'cost'
147 148
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
149
    HSIGMOID = 'hsigmoid'
150 151
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
152
    DEPTHWISE_CONV_LAYER = 'depthwise_conv'
153 154 155 156
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
    POOL_LAYER = 'pool'
Z
zhangjinchao01 已提交
157 158 159 160 161 162 163
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
164
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
165 166 167 168 169 170 171

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
172
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
173 174 175
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
176
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
177
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
178
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
179 180 181 182 183 184 185 186 187 188 189

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
190
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
191
    BLOCK_EXPAND = "blockexpand"
192
    MAXOUT = "maxout"
Q
qijun 已提交
193
    SPP_LAYER = "spp"
D
dangqingqing 已提交
194
    PAD_LAYER = "pad"
W
wwhu 已提交
195
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
196
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
197 198 199 200 201 202 203 204

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
205
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
206

207 208 209 210 211 212 213 214 215 216 217
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
    HUBER = 'huber'
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
Z
zhangjinchao01 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
239
    """
L
Luo Tao 已提交
240
    PaddlePaddle supports three sequence types:
241 242 243

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
244 245
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
246

L
Luo Tao 已提交
247
    Accordingly, AggregateLevel supports two modes:
248

L
Luo Tao 已提交
249
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
250
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
251 252
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
253
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
254 255 256
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
257 258
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
259 260 261
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
284
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
285 286
    """

Q
qijun 已提交
287 288 289 290 291 292 293 294 295
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
296
                 reverse=None):
Z
zhangjinchao01 已提交
297 298
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
299
        assert size is not None
Z
zhangjinchao01 已提交
300 301
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
302
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
303
        self.layer_type = layer_type
304 305
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
306 307 308 309 310 311 312 313
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
314
        self.reverse = reverse
Z
zhangjinchao01 已提交
315

316 317 318 319 320 321 322 323
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
324 325 326

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
327
DEVICE = 'device'
Z
zhangjinchao01 已提交
328 329 330


def layer_support(*attrs):
331
    attrs_list = list(attrs)
332
    attrs_list.append(DEVICE)
Q
qijun 已提交
333

Z
zhangjinchao01 已提交
334 335 336
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
337
            for attr in attrs_list:
Z
zhangjinchao01 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
354 355 356 357 358
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
398 399
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
400 401 402 403
    proj.origin = input
    return proj


404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
434 435
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
436 437 438 439
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
479 480
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
481 482 483 484
    proj.origin = input
    return proj


485
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
516
    :type input: LayerOutput
Z
zhangjinchao01 已提交
517 518
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
519
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
520 521 522 523 524 525
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
526 527
        if size is None:
            size = input.size - offset
Q
qijun 已提交
528
        proj = IdentityOffsetProjection(
529
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
530 531 532 533
        proj.origin = input
    return proj


X
xuwei06 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
556
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
557 558 559 560
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
561
@wrap_param_attr_default()
562
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
563
    """
564
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

578 579 580 581 582 583 584
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
585 586
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
587
    proj.origin = input
588
    return proj
Z
zhangjinchao01 已提交
589

590 591

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
592 593
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
594

Z
zhangjinchao01 已提交
595
    .. math::
L
Luo Tao 已提交
596
       out.row[i] += scale * (a.row[i] .* b.row[i])
597

Z
zhangjinchao01 已提交
598 599
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
600

Z
zhangjinchao01 已提交
601
    The example usage is:
602

Z
zhangjinchao01 已提交
603
    .. code-block:: python
604

L
Luo Tao 已提交
605
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
606

607 608 609 610
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
611 612
    :param scale: config scalar, default value is one.
    :type scale: float
613 614
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
615
    """
616 617 618
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
619
    a = kwargs.get('x', a)  # For Backward capacity.
620 621 622 623 624 625
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
626
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
627
    op.origin = [a, b]
628
    return op
Z
zhangjinchao01 已提交
629

630

Z
zhangjinchao01 已提交
631
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
632 633 634
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
671 672 673 674 675 676
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
690
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
        :param bias_attr: The Bias Attribute. If no bias, then pass False or
                          something not type of ParameterAttribute. None will
                          get a default Bias.
        :type bias_attr: ParameterAttribute or None means has bias. Any other
                         type means no bias.
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
707 708 709 710 711 712 713
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
714 715 716 717 718
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

719
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
720 721 722 723 724 725 726 727
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
728
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
729
            self.inputs.append(other)
730 731 732 733
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
734 735 736 737 738 739 740 741
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

742
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
743 744
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
745
        assert len(self.inputs) != 0
746
        ml = MixedLayer(
Z
zhangjinchao01 已提交
747 748 749 750 751
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
752
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
753 754 755
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
756
        self.finalized = True
Z
zhangjinchao01 已提交
757 758 759 760 761 762


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
763 764 765 766 767
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
812 813 814 815 816 817
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
818
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
819 820 821 822 823 824 825 826
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
L
Luo Tao 已提交
827
def data_layer(name, size, height=None, width=None, layer_attr=None):
Z
zhangjinchao01 已提交
828 829 830 831 832 833 834
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
835
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
836 837 838 839 840

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
841
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
842
    :type height: int|None
L
Luo Tao 已提交
843
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
844
    :type width: int|None
Z
zhangjinchao01 已提交
845 846
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
847
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
848 849
    :rtype: LayerOutput
    """
Q
qijun 已提交
850 851 852 853
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
L
Luo Tao 已提交
854 855
        height=height,
        width=width,
Q
qijun 已提交
856
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878

    return LayerOutput(name, LayerType.DATA, size=size)


@wrap_name_default("embedding")
@wrap_param_attr_default()
@layer_support(ERROR_CLIPPING)
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
879
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
880 881
    :rtype: LayerOutput
    """
Q
qijun 已提交
882 883 884 885 886 887
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
888 889 890 891 892 893 894 895 896
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
897 898 899 900 901 902 903
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
904 905 906 907 908 909 910 911 912 913 914 915
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
916
    which is equal to:
Z
zhangjinchao01 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
939
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
940 941 942 943
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
944
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
945 946
        param_attr = [param_attr]
    else:
947
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
948 949 950 951
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

952
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
953 954

    Layer(
Q
qijun 已提交
955 956 957
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
958 959 960 961 962
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
963 964 965
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
966

967

968
@wrap_name_default("print")
969
def printer_layer(input, format=None, name=None):
970 971
    """
    Print the output value of input layers. This layer is useful for debugging.
972 973 974 975 976

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
977
    :return: LayerOutput
978
    """
979 980 981 982 983
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
984 985 986

    Layer(
        name=name,
987
        format=format,
988
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
989
        inputs=[l.name for l in input], )
990
    # this layer don't return anything, can not be input of other layer.
991

X
xuwei06 已提交
992 993 994 995 996 997 998
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
999

Y
yuan 已提交
1000
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1001
def priorbox_layer(input,
G
gaoyuan 已提交
1002
                   image,
G
gaoyuan 已提交
1003 1004 1005 1006 1007
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1008 1009 1010 1011 1012 1013 1014
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
1015 1016
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1028
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1029 1030 1031
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1032
        inputs=[input.name, image.name],
Y
yuan 已提交
1033 1034 1035 1036 1037 1038
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1039 1040
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1041
        parents=[input, image],
G
gaoyuan 已提交
1042 1043 1044
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1045

1046 1047
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1048 1049 1050 1051 1052
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1053

G
gaoyuan 已提交
1054 1055 1056 1057 1058 1059 1060 1061
    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1062
    assert input.num_filters is not None
G
gaoyuan 已提交
1063 1064
    Layer(
        name=name,
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1078 1079
    return LayerOutput(
        name,
1080
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1081 1082 1083 1084 1085
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1086 1087 1088 1089
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1090 1091 1092 1093
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1094
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1105
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1106

L
Luo Tao 已提交
1107 1108
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
    :param bias_attr: Bias parameter attribute. False if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1121
    :return: LayerOutput object.
Y
Yu Yang 已提交
1122
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1123 1124
    """
    extra_dict = dict()
1125
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1126 1127
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1128 1129 1130 1131
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1132 1133 1134 1135 1136 1137 1138 1139
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
Q
qijun 已提交
1140
        **extra_dict)
Z
zhangjinchao01 已提交
1141

Q
qijun 已提交
1142 1143
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1144

Q
qijun 已提交
1145

Z
zhangjinchao01 已提交
1146 1147
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1148
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1149 1150 1151
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
@layer_support(DROPOUT)
Q
qijun 已提交
1152 1153
def lstmemory(input,
              name=None,
1154
              size=None,
Q
qijun 已提交
1155 1156 1157 1158 1159 1160
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1161 1162 1163 1164 1165 1166 1167 1168
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1169
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1170

L
luotao02 已提交
1171
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1172

L
luotao02 已提交
1173
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1174

L
luotao02 已提交
1175
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1176

L
luotao02 已提交
1177
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1178 1179


C
caoying03 已提交
1180
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1181
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1182 1183 1184 1185
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1186

C
caoying03 已提交
1187
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1188 1189
    to config a simple plain lstm layer.

C
caoying03 已提交
1190 1191 1192 1193
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1194 1195 1196 1197 1198

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1199 1200
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
Z
zhangjinchao01 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation

    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1219
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1220 1221 1222 1223 1224 1225
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1226
    assert input.size is not None and input.size % 4 == 0
1227

1228 1229 1230 1231 1232
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1233 1234 1235
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1236

Q
qijun 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1247

Q
qijun 已提交
1248 1249 1250 1251 1252
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1253

Z
zhangjinchao01 已提交
1254 1255 1256

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1257
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1258 1259 1260
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
@layer_support(DROPOUT)
Q
qijun 已提交
1261
def grumemory(input,
1262
              size=None,
Q
qijun 已提交
1263 1264 1265 1266 1267 1268
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1290 1291
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1292 1293 1294 1295 1296

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1297 1298 1299
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1300 1301 1302 1303 1304

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1305
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1306
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1307 1308 1309
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1310

C
caoying03 已提交
1311 1312 1313
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1325 1326
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1327
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1343
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1344 1345 1346 1347
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1348 1349 1350 1351 1352 1353
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1354 1355 1356
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1357

Q
qijun 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1367

Q
qijun 已提交
1368 1369 1370 1371 1372
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1373

Z
zhangjinchao01 已提交
1374 1375 1376

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1377 1378
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1379
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1380
             stride=-1,
Z
zhangjinchao01 已提交
1381 1382 1383 1384
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1385 1386 1387
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1388
    of stride is -1.
1389

L
Luo Tao 已提交
1390 1391 1392 1393 1394 1395
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1396 1397 1398 1399 1400
    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
1401
    :param stride: window size.
1402
    :type stride: Int
Z
zhangjinchao01 已提交
1403 1404
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1405
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1406 1407
    :rtype: LayerOutput
    """
1408 1409 1410 1411 1412 1413
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1414
    if agg_level == AggregateLevel.TO_SEQUENCE:
1415 1416
        assert stride == -1

Z
zhangjinchao01 已提交
1417 1418 1419 1420 1421
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1422
        stride=stride,
Q
qijun 已提交
1423 1424 1425 1426 1427 1428
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1429 1430 1431 1432


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1433 1434
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1435
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1436
              stride=-1,
Z
zhangjinchao01 已提交
1437 1438 1439 1440
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1441 1442 1443
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1444
    of stride is -1.
1445

L
Luo Tao 已提交
1446 1447 1448 1449 1450 1451
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1452 1453 1454 1455 1456
    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
1457
    :param stride: window size.
1458
    :type stride: Int
Z
zhangjinchao01 已提交
1459 1460
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1461
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1462 1463
    :rtype: LayerOutput
    """
1464 1465 1466 1467 1468 1469 1470

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1471
    if agg_level == AggregateLevel.TO_SEQUENCE:
1472 1473
        assert stride == -1

Z
zhangjinchao01 已提交
1474 1475 1476 1477 1478
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1479
        stride=stride,
Q
qijun 已提交
1480 1481 1482 1483 1484 1485
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1486 1487 1488


class ExpandLevel(object):
1489 1490 1491 1492 1493
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1494 1495
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1496 1497
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1498 1499
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1500 1501
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1502 1503
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1504 1505
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1506

1507

Z
zhangjinchao01 已提交
1508 1509
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1510 1511
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1512 1513
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1514
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1526
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1541
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1551 1552 1553 1554 1555 1556
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1557 1558


X
xuwei06 已提交
1559
@wrap_name_default()
X
xuwei06 已提交
1560
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1561
@layer_support()
X
xuwei06 已提交
1562 1563 1564
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1565
                 act=None,
X
xuwei06 已提交
1566 1567
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1568
    """
X
xuwei06 已提交
1569
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1570

X
xuwei06 已提交
1571
    If as_row_vector:
X
xuwei06 已提交
1572
    .. math::
X
xuwei06 已提交
1573 1574 1575 1576 1577
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1578 1579 1580 1581 1582

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1583
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1584 1585 1586 1587 1588 1589

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
X
xuwei06 已提交
1590 1591 1592 1593 1594 1595
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
X
xuwei06 已提交
1596 1597
    :param act: Activation type.
    :type act: BaseActivation
X
xuwei06 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1608
        active_type=act.name,
X
xuwei06 已提交
1609
        num_filters=num_repeats,
X
xuwei06 已提交
1610
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1611
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1612 1613 1614 1615 1616
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1617
        activation=act,
Q
qijun 已提交
1618 1619
        parents=[input])

X
xuwei06 已提交
1620

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support()
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1633
    the dimension of each instance is M, and the input reshape_size is N, then the
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
    :param name: Layer name.
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1704
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1705 1706
    :rtype: LayerOutput
    """
1707
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1708
    assert len(input) == 2
1709 1710 1711 1712 1713 1714 1715
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1716 1717 1718 1719
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1720 1721 1722 1723 1724 1725
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
1726 1727


L
liaogang 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
1744
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
1745

L
liaogang 已提交
1746
    :param   input:        A input layer.
L
liaogang 已提交
1747
    :type    input:        LayerOutput.
L
liaogang 已提交
1748
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
1749
    :type    out_size_x:   int|None
L
liaogang 已提交
1750
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
1751
    :type    out_size_y:   int|None
L
liaogang 已提交
1752
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
1753
    :type    name:         None|basestring
L
liaogang 已提交
1754
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
1755 1756 1757 1758 1759 1760 1761
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
1762
    assert input.num_filters is not None
L
liaogang 已提交
1763
    num_channels = input.num_filters
Q
qijun 已提交
1764 1765 1766 1767 1768 1769 1770
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
1771
                channels=num_channels)),
Q
qijun 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
1781

Z
zhangjinchao01 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1809
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1810 1811
    :rtype: LayerOutput
    """
1812 1813 1814
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1815 1816 1817
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
1818
        inputs=[weight.name, input.name],
Q
qijun 已提交
1819 1820 1821
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
1822 1823 1824 1825 1826 1827


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
1828
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
1829 1830

    .. math::
1831
       y  = w x
Z
zhangjinchao01 已提交
1832

1833 1834 1835 1836 1837
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1853
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1854 1855
    :rtype: LayerOutput
    """
1856 1857 1858
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1859 1860 1861 1862
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
1863 1864 1865
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
1866 1867 1868 1869 1870 1871


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
1872
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1891
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1892 1893 1894 1895 1896 1897
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
1898 1899 1900
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1901 1902


1903 1904
@wrap_name_default()
@layer_support()
H
Haonan 已提交
1905
def rotate_layer(input, height, width, name=None, layer_attr=None):
1906
    """
H
Haonan 已提交
1907 1908
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
1909 1910

    .. math::
H
Haonan 已提交
1911
       y(j,i,:) = x(M-i-1,j,:)
1912

H
Haonan 已提交
1913
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
1914 1915 1916 1917 1918 1919

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
1920 1921
                          height=100,
                          width=100)
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
1935 1936 1937
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
1938
        width=width,
H
Haonan 已提交
1939 1940 1941 1942 1943 1944 1945 1946
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
1947 1948


Z
zhangjinchao01 已提交
1949 1950
@wrap_name_default()
@layer_support()
1951
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
1952 1953 1954 1955
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
1956
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
1957 1958 1959 1960 1961
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
1962

1963 1964
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
1965

L
Luo Tao 已提交
1966 1967 1968 1969 1970 1971
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

Z
zhangjinchao01 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
1984
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1985 1986
    :rtype: LayerOutput
    """
1987
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
1988 1989 1990 1991 1992 1993
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
1994
            **ExtraLayerAttribute.to_kwargs(layer_attr))
1995
    else:
1996 1997
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
1998 1999 2000 2001 2002 2003
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2004
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2005
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2006

2007

Z
zhangjinchao01 已提交
2008 2009
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2010
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2011
@layer_support()
Q
qijun 已提交
2012 2013
def hsigmoid(input,
             label,
2014
             num_classes=None,
Q
qijun 已提交
2015 2016 2017 2018
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2030
                        label=data_layer)
Z
zhangjinchao01 已提交
2031 2032 2033 2034 2035 2036 2037

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
2038
    :type num_classes: int|None
L
luotao02 已提交
2039 2040
    :param name: layer name
    :type name: basestring
Z
zhangjinchao01 已提交
2041 2042 2043
    :param bias_attr: Bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
2044 2045
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
2046 2047
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2048
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2049 2050 2051 2052
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2053 2054 2055 2056 2057 2058 2059 2060 2061
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2062 2063 2064
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2065 2066 2067 2068 2069
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2070 2071
    ipts_for_layer = []
    parents = []
2072
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2073
        assert isinstance(each_input, LayerOutput)
2074
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2075 2076 2077 2078
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2079
    l = Layer(
Z
zhangjinchao01 已提交
2080 2081 2082 2083 2084
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2085 2086 2087
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2088

2089

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
@wrap_name_default("depthwise_conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_depthwise_conv_layer(input,
                             filter_size,
                             num_filters,
                             name=None,
                             num_channels=None,
                             act=None,
                             groups=1,
                             stride=1,
                             padding=0,
                             bias_attr=None,
                             param_attr=None,
                             shared_biases=True,
                             layer_attr=None,
                             filter_size_y=None,
                             stride_y=None,
                             padding_y=None,
                             trans=False,
                             layer_type=None):

    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    lt = LayerType.DEPTHWISE_CONV_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)


Z
zhangjinchao01 已提交
2178 2179 2180 2181 2182
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2199 2200
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2201
    """
2202
    Convolution layer for image. Paddle can support both square and non-square
2203
    input currently.
Z
zhangjinchao01 已提交
2204 2205 2206 2207

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2208

2209
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2210
    and non-square input currently.
2211

X
xuwei06 已提交
2212
    The details of convolution transpose layer,
2213 2214 2215
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2216 2217 2218 2219
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2220 2221 2222
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2223
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2224 2225
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2226

L
Luo Tao 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

Z
zhangjinchao01 已提交
2237 2238 2239 2240
    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2241 2242 2243
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2244 2245 2246
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2247
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2248 2249 2250 2251 2252
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2253 2254 2255
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2256 2257
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2258 2259 2260
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2275 2276
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2277
    :param layer_type: specify the layer_type, default is None. If trans=True,
2278 2279
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2280
                       "cudnn_conv"
2281
    :type layer_type: String
D
dangqingqing 已提交
2282
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2283 2284 2285 2286 2287
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2288

Z
zhangjinchao01 已提交
2289
    if filter_size_y is None:
2290 2291 2292 2293 2294 2295
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2296
    if stride_y is None:
2297 2298 2299 2300 2301 2302
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2303
    if padding_y is None:
2304 2305 2306 2307 2308 2309 2310 2311
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2312
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2313 2314 2315 2316
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2317

2318 2319
    if layer_type:
        if trans:
2320
            assert layer_type in ["exconvt", "cudnn_convt"]
2321 2322 2323 2324 2325
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2326

X
xuwei06 已提交
2327
    l = Layer(
Z
zhangjinchao01 已提交
2328
        name=name,
Q
qijun 已提交
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2341 2342 2343 2344
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2345
        type=lt,
Q
qijun 已提交
2346 2347 2348 2349 2350 2351 2352 2353
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2354 2355 2356 2357


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2368 2369
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2370 2371 2372 2373 2374 2375 2376
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2405
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2406
    :type padding: int
2407 2408
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2409 2410 2411 2412
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2413
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2414
    :type pool_size: int
2415 2416
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2417 2418
    :param num_channels: number of input channel.
    :type num_channels: int
2419
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2420 2421
                      MaxPooling.
    :type pool_type: BasePoolingType
2422
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2423
    :type stride: int
2424 2425
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2426 2427
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2428 2429 2430 2431
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2432 2433
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

2444
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2445
        if (
Y
Yu Yang 已提交
2446
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2447
        else pool_type.name
2448 2449 2450 2451 2452

    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2453
    l = Layer(
Z
zhangjinchao01 已提交
2454 2455
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2468
                    padding_y=padding_y))
Q
qijun 已提交
2469
        ],
2470
        ceil_mode=ceil_mode,
Q
qijun 已提交
2471 2472 2473 2474 2475 2476 2477
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2478 2479


Q
qijun 已提交
2480 2481
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2482 2483 2484 2485 2486 2487
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2488 2489 2490 2491 2492
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2493 2494 2495 2496
    The example usage is:

    ..  code-block:: python

2497 2498 2499
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2500 2501
                        pool_type=MaxPooling())

Q
qijun 已提交
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2530
    l = Layer(
Q
qijun 已提交
2531 2532
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2533 2534 2535 2536 2537
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2538
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2550 2551 2552 2553
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2554
    l = Layer(
Q
qijun 已提交
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2574 2575 2576 2577


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2578 2579 2580 2581 2582 2583
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2584
                      layer_attr=None):
Z
zhangjinchao01 已提交
2585
    """
2586
    Response normalization across feature maps.
D
dangqingqing 已提交
2587 2588
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2589

L
Luo Tao 已提交
2590 2591 2592
    The example usage is:

    ..  code-block:: python
2593

L
Luo Tao 已提交
2594 2595
        norm = img_cmrnorm_layer(input=net, size=5)

Z
zhangjinchao01 已提交
2596
    :param name: layer name.
D
dangqingqing 已提交
2597
    :type name: None|basestring
Z
zhangjinchao01 已提交
2598 2599
    :param input: layer's input.
    :type input: LayerOutput
2600
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2601
    :type size: int
D
dangqingqing 已提交
2602
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2603
    :type scale: float
D
dangqingqing 已提交
2604
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2605 2606 2607 2608 2609
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2610
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2611 2612 2613
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2614
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2615 2616 2617


@wrap_bias_attr_default()
2618 2619
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2620 2621 2622
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
@layer_support(DROPOUT)
Q
qijun 已提交
2623 2624 2625 2626 2627 2628 2629
def batch_norm_layer(input,
                     act=None,
                     name=None,
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
                     use_global_stats=None):
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
2651 2652 2653
    The example usage is:

    ..  code-block:: python
2654

L
Luo Tao 已提交
2655 2656
        norm = batch_norm_layer(input=net, act=ReluActivation())

Z
zhangjinchao01 已提交
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
2671
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
    :type bias_attr: ParameterAttribute
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
D
dangqingqing 已提交
2699
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
    :rtype: LayerOutput
    """
    if not isinstance(act, ReluActivation):
        logger.log(logging.WARN,
                   "%s is not recommend for batch normalization's activation, "
                   "maybe the relu is better" % act.name)

    if not isinstance(input.activation, LinearActivation):
        logger.log(logging.WARN,
                   "The activation should be inside batch normalization, the "
                   "previous layer's activation may be Linear")

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
2719
    l = Layer(
Z
zhangjinchao01 已提交
2720
        name=name,
Q
qijun 已提交
2721 2722
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
2723 2724 2725 2726 2727 2728
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
Q
qijun 已提交
2729
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2730

Q
qijun 已提交
2731 2732 2733 2734 2735 2736 2737
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2765
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2766 2767 2768 2769 2770 2771
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2772 2773 2774
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2775 2776 2777 2778 2779 2780


@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(DROPOUT)
Q
qijun 已提交
2781
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
2804 2805 2806
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
2807 2808

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
2809 2810
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
    :param bias_attr: Bias attribute. If False, means no bias. None is default
                      bias.
    :type bias_attr: ParameterAttribute|bool
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2825
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2826 2827 2828 2829 2830 2831
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

2832
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2833 2834 2835 2836 2837 2838 2839
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
2840
    l = Layer(
Q
qijun 已提交
2841 2842 2843
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
2844 2845
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
2846
        **ExtraLayerAttribute.to_kwargs(layer_attr))
2847

Q
qijun 已提交
2848 2849 2850 2851 2852 2853 2854
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2855 2856 2857 2858 2859


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
@layer_support()
2860
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
2861 2862 2863 2864
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

2865 2866 2867 2868 2869 2870
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

Z
zhangjinchao01 已提交
2871 2872 2873
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
2874
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
2875 2876 2877 2878
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2879
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2880 2881 2882 2883 2884 2885 2886 2887
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
2888
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2889 2890

    def __is_type__(o, tp):
2891
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
2913 2914
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
2915

Q
qijun 已提交
2916 2917
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
2918

2919 2920
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
2921

2922
    layer = Layer(
Q
qijun 已提交
2923 2924
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
2925 2926
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
2927
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
2928
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2929

2930
    sz = layer.config.size
Z
zhangjinchao01 已提交
2931

Q
qijun 已提交
2932 2933 2934 2935 2936 2937 2938 2939
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


2940 2941
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
2942
@wrap_bias_attr_default(has_bias=False)
2943 2944 2945 2946 2947
@layer_support()
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
2948

2949
    Inputs:
X
xuwei06 已提交
2950
      - a = [a1, a2, ..., am]
2951
      - b = [b1, b2, ..., bn]
2952

X
xuwei06 已提交
2953 2954 2955 2956
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

    :param name: Layer name.
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
2974 2975 2976 2977
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


2999
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3000 3001
def memory(name,
           size,
3002
           memory_name=None,
Q
qijun 已提交
3003 3004 3005 3006
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3027 3028 3029 3030 3031 3032 3033 3034 3035
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3036

3037 3038 3039 3040 3041 3042 3043
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3044 3045 3046
    :type name: basestring
    :param size: size of memory.
    :type size: int
3047 3048 3049
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3050
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3051 3052 3053 3054 3055 3056 3057 3058 3059
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3060
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3071 3072
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3073

3074 3075 3076 3077 3078 3079 3080 3081
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3082 3083

    lout = LayerOutput(
3084
        name=memory_name,
Q
qijun 已提交
3085 3086 3087
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3088 3089 3090 3091
    return lout


@wrap_bias_attr_default()
Q
qijun 已提交
3092 3093
@wrap_act_default(
    param_names=['gate_act', 'state_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3094 3095 3096
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3097 3098
def lstm_step_layer(input,
                    state,
3099
                    size=None,
Q
qijun 已提交
3100 3101 3102 3103 3104 3105
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3106
    """
3107 3108
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3109 3110 3111

    ..  math::

3112
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3113

3114
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3115

3116
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3117

3118
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3119

L
luotao02 已提交
3120
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3121 3122


L
luotao02 已提交
3123
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3124
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3125
    input vectors.
Z
zhangjinchao01 已提交
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3136 3137
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3138 3139 3140 3141
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
3142 3143
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
    :param bias_attr: Bias Attribute.
    :type bias_attr: ParameterAttribute
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3162
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3163 3164
    :rtype: LayerOutput
    """
3165 3166 3167

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3168 3169 3170 3171 3172 3173 3174
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3175
        size=state.size,
Q
qijun 已提交
3176 3177
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3178

Q
qijun 已提交
3179 3180 3181 3182 3183 3184 3185
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3186 3187 3188


@wrap_bias_attr_default()
W
wangyang59 已提交
3189
@wrap_param_attr_default()
Q
qijun 已提交
3190
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3191 3192 3193
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3194 3195 3196 3197 3198 3199 3200
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3201
                   param_attr=None,
Q
qijun 已提交
3202
                   layer_attr=None):
Z
zhangjinchao01 已提交
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
    :param bias_attr:
3213 3214
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3215
    :param layer_attr:
D
dangqingqing 已提交
3216
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3217 3218 3219 3220 3221 3222 3223 3224
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3225 3226 3227 3228
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3229
        # backward model compatibility.
3230
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3231 3232 3233 3234
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3235
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3236
    return LayerOutput(
Q
qijun 已提交
3237 3238
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3239
        parents=[input, output_mem],
Q
qijun 已提交
3240 3241
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3242 3243


Y
Yu Yang 已提交
3244 3245 3246 3247
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3248
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
    :param name:
    :param act:
    :param gate_act:
    :param bias_attr:
    :param param_attr:
    :param layer_attr:
    :return:
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3316 3317 3318 3319
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3320 3321 3322 3323
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3324 3325 3326 3327 3328 3329 3330 3331 3332

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3333
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3334 3335 3336 3337 3338 3339 3340
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3341 3342 3343 3344 3345 3346 3347
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3348

Q
qijun 已提交
3349 3350 3351 3352 3353
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3354 3355 3356 3357 3358 3359 3360


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3361 3362 3363 3364 3365 3366 3367
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3368
    """
3369 3370
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3371

3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
    :param bias_attr: bias attribute.
    :type bias_attr: ParameterAttribute
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3399
    :return: LayerOutput object.
3400
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3401
    """
Q
qijun 已提交
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3417 3418 3419 3420 3421 3422


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3423 3424
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3425
    """
3426

Z
zhangjinchao01 已提交
3427 3428 3429
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3430
        assert input.size is not None
Z
zhangjinchao01 已提交
3431
        if size is not None:
3432
            assert input.size == size
Z
zhangjinchao01 已提交
3433 3434


3435
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3436
    """
3437
    DEPRECATED.
Z
zhangjinchao01 已提交
3438 3439 3440 3441 3442 3443 3444 3445
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3446
    return input
Z
zhangjinchao01 已提交
3447 3448 3449


@wrap_name_default("recurrent_group")
L
Luo Tao 已提交
3450 3451 3452 3453 3454
def recurrent_group(step,
                    input,
                    reverse=False,
                    name=None,
                    targetInlink=None,
L
Luo Tao 已提交
3455
                    is_generating=False):
Z
zhangjinchao01 已提交
3456
    """
C
caoying03 已提交
3457 3458 3459 3460 3461
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3506 3507
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3508
    :type reverse: bool
3509

3510 3511
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3512 3513 3514 3515 3516 3517 3518 3519 3520

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

L
Luo Tao 已提交
3521
    :param is_generating: If is generating, none of input type should be LayerOutput;
3522
                          else, for training or testing, one of the input type must
L
Luo Tao 已提交
3523
                          be LayerOutput.
L
Luo Tao 已提交
3524

L
Liu Yiqun 已提交
3525
    :type is_generating: bool
3526

D
dangqingqing 已提交
3527
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3528 3529 3530 3531 3532
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

    def is_single_input(x):
3533
        return isinstance(x, LayerOutput) or isinstance(x, StaticInput)
Z
zhangjinchao01 已提交
3534 3535 3536

    if is_single_input(input):
        input = [input]
3537
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3538 3539

    def is_in_links(x):
3540
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3541 3542 3543 3544

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3545
        name=name,
3546 3547
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3548
    in_args = []
3549
    has_LayerOutput = False
Z
zhangjinchao01 已提交
3550 3551 3552 3553
    for each_input in input:
        assert is_single_input(each_input)
        if isinstance(each_input, LayerOutput):
            in_args.append(each_input)
3554
            has_LayerOutput = True
3555
        else:  # StaticInput
Z
zhangjinchao01 已提交
3556
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3557
            mem = memory(
3558
                name=None,
Q
qijun 已提交
3559 3560
                size=each_input.input.size,
                boot_layer=each_input.input)
3561
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3562 3563
            in_args.append(mem)

L
Luo Tao 已提交
3564
    assert (is_generating != has_LayerOutput)
L
Luo Tao 已提交
3565

Z
zhangjinchao01 已提交
3566 3567 3568 3569 3570 3571 3572
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

    for ot in layer_outs:
        assert isinstance(ot, LayerOutput)
3573
        ot.reverse = reverse
3574
        RecurrentLayerGroupSetOutLink(ot.name)
Z
zhangjinchao01 已提交
3575 3576 3577

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3578 3579 3580 3581 3582
    for layer_out in layer_outs:
        # Thee previous full_name is the name is the rnn group
        # We need a full_name outside the rnn group
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3583 3584 3585 3586 3587
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3588

Z
zhangjinchao01 已提交
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
        return maxid_layer(input=input, name='__beam_search_predict__')

    def before_real_step(self):
Q
qijun 已提交
3606 3607 3608 3609 3610 3611 3612 3613 3614
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
3615 3616 3617
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
3618
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3642
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3643 3644 3645 3646
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3657

3658

H
Haonan 已提交
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
3695

Z
zhangjinchao01 已提交
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

L
luotao02 已提交
3712 3713
    :param name: Layer name.
    :type name: basestring
Z
zhangjinchao01 已提交
3714 3715 3716 3717 3718 3719
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3720
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3721 3722
    :rtype: LayerOutput
    """
Q
qijun 已提交
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3734 3735 3736


@wrap_name_default()
Q
qijun 已提交
3737 3738 3739 3740 3741 3742 3743
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
3744
                num_results_per_sample=None):
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
3756
            with mixed_layer(size=512, name='rnn') as simple_rnn:
3757 3758 3759 3760
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

3761 3762 3763 3764 3765
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

3766 3767
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
3768 3769
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
3770 3771
                               bos_id=0,
                               eos_id=1,
3772
                               beam_size=5)
3773 3774 3775 3776 3777 3778 3779 3780 3781

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
3782
                 step, and it is applied to sequences with arbitrary length by
3783 3784 3785 3786 3787
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
3788 3789
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
3790
    :type input: list
3791 3792 3793
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
3794
                   symbol is essential, since it is used to initialize the RNN
3795 3796 3797 3798 3799 3800 3801 3802
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
3803 3804
    :param max_length: Max generated sequence length.
    :type max_length: int
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
3815 3816
    :return: The generated word index.
    :rtype: LayerOutput
3817 3818
    """

Z
zhangjinchao01 已提交
3819 3820 3821 3822 3823
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
3824
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
3825 3826 3827 3828 3829 3830
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
3831 3832
        assert isinstance(each_input, StaticInput) or isinstance(
            each_input, BaseGeneratedInput)
Z
zhangjinchao01 已提交
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
        if isinstance(each_input, BaseGeneratedInput):
            assert generated_input_index == -1
            generated_input_index = i
        else:
            real_input.append(each_input)

    assert generated_input_index != -1

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
3848 3849 3850 3851 3852 3853
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
3854 3855 3856 3857 3858 3859 3860 3861 3862

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

        eos_layer(input=predict, eos_id=eos_id, name=eos_name)
        return predict

Q
qijun 已提交
3863
    tmp = recurrent_group(
L
Luo Tao 已提交
3864 3865 3866 3867
        step=__real_step__,
        input=real_input,
        reverse=False,
        name=name,
L
Luo Tao 已提交
3868
        is_generating=True)
3869

Z
zhangjinchao01 已提交
3870 3871
    return tmp

Q
qijun 已提交
3872

3873 3874
def __cost_input__(input, label, weight=None):
    """
3875
    inputs and parents for cost layers.
3876 3877 3878 3879
    """
    ipts = [Input(input.name), Input(label.name)]
    parents = [input, label]
    if weight is not None:
3880
        assert weight.size == 1
3881 3882 3883
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
3884

Z
zhangjinchao01 已提交
3885 3886

@wrap_name_default()
L
luotao1 已提交
3887
@layer_support()
3888
def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
3889
    """
L
Luo Tao 已提交
3890 3891 3892 3893
    mean squared error cost:

    ..  math::

L
Liu Yiqun 已提交
3894
        \\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
3895 3896

    :param name: layer name.
3897
    :type name: basestring
Z
zhangjinchao01 已提交
3898
    :param input: Network prediction.
3899
    :type input: LayerOutput
Z
zhangjinchao01 已提交
3900
    :param label: Data label.
3901 3902 3903 3904
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
3905 3906
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
3907 3908
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3909
    :return: LayerOutput object.
3910
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3911
    """
3912 3913
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
3914 3915 3916 3917
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
3918
        coeff=coeff,
Q
qijun 已提交
3919
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
3920
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
3921 3922


L
Luo Tao 已提交
3923 3924 3925
regression_cost = mse_cost


Z
zhangjinchao01 已提交
3926
@wrap_name_default("cost")
3927
@layer_support()
Q
qijun 已提交
3928 3929 3930 3931
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
3932
                        evaluator=classification_error_evaluator,
3933 3934
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
3935 3936 3937 3938 3939 3940 3941 3942 3943
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
3944 3945 3946
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
3947
    :param evaluator: Evaluator method.
3948 3949
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
3950 3951
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
3952
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3953 3954 3955 3956 3957
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
3958 3959 3960

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
3961 3962 3963 3964
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
3965
        coeff=coeff,
Q
qijun 已提交
3966
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

3977
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
3978

3979
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
3980 3981 3982 3983 3984
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
3985
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
3986

3987

Q
qijun 已提交
3988 3989 3990 3991 3992 3993 3994 3995 3996
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
3997 3998
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4009 4010
       op = conv_operator(img=input1,
                          filter=input2,
4011
                          filter_size=3,
Z
zhangjinchao01 已提交
4012 4013 4014
                          num_filters=64,
                          num_channels=64)

4015 4016 4017 4018
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4019 4020
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4021 4022 4023
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4024
    :type filter_size_y: int
4025 4026
    :param num_filters: channel of output data.
    :type num_filters: int
4027 4028
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4029
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4030
    :type stride: int
Z
zhangjinchao01 已提交
4031
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4032
    :type stride_y: int
Z
zhangjinchao01 已提交
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4046

4047 4048
    if num_channels is None:
        num_channels = img.num_filters
4049 4050 4051

    assert isinstance(filter, LayerOutput)
    if filter.size is not None:
4052
        filter.size = filter_size * filter_size_y * num_filters * num_channels
4053

4054 4055 4056
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4068

4069
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4070 4071
    return op

Q
qijun 已提交
4072

4073
@wrap_param_attr_default()
Q
qijun 已提交
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4084 4085
                    param_attr=None,
                    trans=False):
4086 4087 4088 4089 4090 4091 4092 4093 4094
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4095
       proj = conv_projection(input=input1,
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4110 4111
    :param num_channels: channel of input data.
    :type num_channels: int
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4124 4125
    :param trans: whether it is convTrans or conv
    :type trans: boolean
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4156
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4157 4158 4159 4160 4161
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4162 4163 4164
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4177 4178 4179 4180

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4181

D
dangqingqing 已提交
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4199

D
dangqingqing 已提交
4200
    For example,
4201

4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4223 4224

    The simply usage is:
D
dangqingqing 已提交
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param name: layer name.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4286
@wrap_name_default()
L
luotao1 已提交
4287 4288
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4300 4301 4302 4303
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4304 4305 4306 4307 4308

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4309
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4310 4311 4312

    :param name: layer name
    :type name: basestring
4313 4314
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4315
    :param b: input layer b.
4316
    :type b: LayerOutput
L
luotao1 已提交
4317 4318
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4319
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4320 4321
    :rtype: LayerOutput
    """
4322 4323
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4324 4325 4326
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4327
        inputs=[a.name, b.name],
Q
qijun 已提交
4328
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4329

Q
qijun 已提交
4330 4331
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4332 4333 4334 4335 4336


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4337
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4338
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4339 4340 4341 4342 4343 4344 4345 4346
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4347 4348 4349 4350 4351
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4352
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4353 4354

    In this formular:
4355 4356
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4357 4358
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4359
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4360 4361 4362 4363 4364

    The simple usage is:

    .. code-block:: python

4365
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4366 4367 4368

    :param name: layer name
    :type name: basestring
4369 4370 4371 4372
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4373
    :param size: the layer dimension.
L
luotao02 已提交
4374
    :type size: int.
Z
zhangjinchao01 已提交
4375 4376 4377
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4378
    :type param_attr: ParameterAttribute
Z
zhangjinchao01 已提交
4379 4380 4381 4382 4383 4384
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4385
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4386 4387
    :rtype: LayerOutput
    """
4388
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4389 4390 4391 4392 4393 4394
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4395 4396 4397 4398
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4399 4400 4401 4402 4403 4404


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
L
luotao1 已提交
4405
@layer_support()
Q
qijun 已提交
4406 4407
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4408
                       select=None,
Q
qijun 已提交
4409 4410
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4411 4412 4413
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4414 4415 4416
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4427
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4428 4429 4430 4431 4432

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4433 4434
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4435
                   If is None, acts exactly like fc_layer.
4436
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4449
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4450 4451 4452 4453
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4454
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4455 4456
        param_attr = [param_attr]
    else:
4457
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4458 4459 4460 4461
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4462 4463 4464 4465
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4466
    Layer(
Q
qijun 已提交
4467 4468 4469
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4470 4471 4472
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4473
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4474 4475 4476 4477
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4478 4479 4480 4481 4482 4483 4484
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4485 4486 4487


@wrap_name_default()
L
luotao1 已提交
4488 4489
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4504 4505
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4506
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4507 4508
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4509
    l = Layer(
Z
zhangjinchao01 已提交
4510 4511 4512
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4513 4514 4515
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4516 4517 4518


@wrap_name_default()
L
luotao1 已提交
4519
@layer_support()
Q
qijun 已提交
4520 4521 4522 4523
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4524
                          layer_attr=None):
Z
zhangjinchao01 已提交
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4546 4547
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4548
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4549 4550 4551 4552 4553 4554 4555 4556
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4557 4558 4559
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4560 4561 4562


@wrap_name_default()
L
luotao1 已提交
4563
@layer_support()
Q
qijun 已提交
4564
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4565
    """
4566 4567 4568 4569
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4570 4571 4572

    .. math::

4573
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4574

4575 4576 4577 4578 4579
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4580

4581
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4582 4583

    In this formular:
4584 4585 4586 4587 4588 4589
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
4590 4591 4592 4593 4594

    The simple usage is:

    .. code-block:: python

4595
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
4596 4597
                                       size=elem_dim)

4598 4599 4600 4601
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
4602 4603 4604 4605
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4606 4607
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4608
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4609 4610
    :rtype: LayerOutput
    """
4611 4612 4613 4614
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
4615
            size = vectors.size / weights.size
4616 4617
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
4618 4619
    Layer(
        name=name,
4620
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
4621
        size=size,
4622
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
4623 4624 4625
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
4626

4627

4628
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
4629

4630

Z
zhangjinchao01 已提交
4631
@wrap_name_default()
L
luotao1 已提交
4632
@layer_support()
Z
zhangjinchao01 已提交
4633 4634 4635 4636 4637 4638 4639
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
4640
                       num_channels=None,
L
luotao1 已提交
4641 4642
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4643 4644
    """
    Expand feature map to minibatch matrix.
4645
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
4646
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
4657
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
4658 4659
    convolution neural network, and before recurrent neural network.

4660 4661 4662 4663
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
4664
       block_expand = block_expand_layer(input=layer,
4665
                                         num_channels=128,
4666 4667 4668 4669 4670
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
4671 4672
    :param input: The input layer.
    :type input: LayerOutput
4673 4674
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
4689 4690
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4691
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4692 4693
    :rtype: LayerOutput
    """
4694 4695 4696
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
4714 4715


4716 4717
@wrap_name_default()
@layer_support()
4718
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
4719 4720 4721 4722 4723
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

4724
    So groups should be larger than 1, and the num of channels should be able
4725 4726
    to devided by groups.

4727
    Please refer to Paper:
4728 4729 4730 4731
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
4732

4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
4762 4763 4764 4765 4766 4767 4768 4769 4770
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
4771 4772


Z
zhangjinchao01 已提交
4773
@wrap_name_default()
L
luotao1 已提交
4774
@layer_support()
Q
qijun 已提交
4775 4776 4777 4778 4779
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
4780
              layer_attr=None):
Z
zhangjinchao01 已提交
4781 4782 4783 4784 4785
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

4786 4787
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
4788 4789
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
4790 4791 4792 4793 4794 4795 4796 4797

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
4798
    The example usage is:
Z
zhangjinchao01 已提交
4799 4800 4801 4802 4803 4804 4805 4806

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

4807
    :param input: The input layer.
Z
zhangjinchao01 已提交
4808 4809 4810
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
4811
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
4812
    :type size: int
4813 4814
    :param name: The name of this layer
    :type name: basestring|None
Z
zhangjinchao01 已提交
4815 4816
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
4817 4818
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4819
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4820 4821 4822 4823
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
4824 4825 4826 4827 4828
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
4829
    Layer(
4830 4831 4832 4833
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
4834
        inputs=[input.name, label.name],
Q
qijun 已提交
4835
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4836 4837
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

4838

4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
4850
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
4851
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

    To use warp_ctc layer, you need to specify the path of :code:`libwarpctc.so`,
    using following methods:

    1. Set it in :code:`paddle.init` (python api) or :code:`paddle_init` (c api),
    such as :code:`paddle.init(use_gpu=True,
    warpctc_dir=your_paddle_source_dir/third_party/install/warpctc/lib)`.

    2. Set environment variable LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH
    on Mac OS. For instance, :code:`export
    LD_LIBRARY_PATH=your_paddle_source_dir/third_party/install/warpctc/lib:$LD_LIBRARY_PATH`.
4869 4870 4871 4872

    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
4873
    icml2006_GravesFGS06.pdf>`_.
4874 4875 4876

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
4877 4878 4879
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
4880 4881
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
4882
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
4883
          'linear' activation is expected instead in the 'input' layer.
4884

C
caoying03 已提交
4885
    The example usage is:
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
4931
@wrap_name_default()
4932
@wrap_param_attr_default()
L
luotao1 已提交
4933
@layer_support()
Q
qijun 已提交
4934 4935 4936 4937 4938 4939
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
4940
              coeff=1.0,
L
luotao1 已提交
4941
              layer_attr=None):
Z
zhangjinchao01 已提交
4942 4943 4944 4945
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
4946
    The example usage is:
Z
zhangjinchao01 已提交
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
4957
    :type label: LayerOutput
Z
zhangjinchao01 已提交
4958 4959 4960 4961 4962 4963 4964 4965 4966
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
4967 4968
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4969 4970
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4971
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4972 4973 4974 4975 4976
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
4977 4978 4979 4980 4981 4982
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
4983

Q
qijun 已提交
4984
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
4985 4986 4987 4988
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
4989 4990 4991 4992
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
4993
        coeff=coeff,
Q
qijun 已提交
4994
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4995 4996 4997
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
4998 4999 5000 5001
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5002

5003

Z
zhangjinchao01 已提交
5004
@wrap_name_default()
5005
@wrap_param_attr_default()
L
luotao1 已提交
5006
@layer_support()
Q
qijun 已提交
5007 5008 5009 5010 5011
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5012
                       layer_attr=None):
Z
zhangjinchao01 已提交
5013 5014 5015 5016 5017 5018 5019
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5020
    The example usage is:
L
Luo Tao 已提交
5021 5022 5023 5024 5025 5026

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5037 5038
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5039
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5040 5041 5042 5043 5044 5045
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5046
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5047 5048 5049 5050
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5051 5052 5053 5054
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5055
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5056 5057 5058
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5059 5060 5061 5062
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5063

Q
qijun 已提交
5064

Y
Yu Yang 已提交
5065
@wrap_act_default(act=SigmoidActivation())
5066
@wrap_bias_attr_default(has_bias=True)
5067
@wrap_param_attr_default()
5068 5069
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5070 5071
def nce_layer(input,
              label,
C
caoying03 已提交
5072
              num_classes=None,
Y
Yu Yang 已提交
5073
              act=None,
5074
              param_attr=None,
Q
qijun 已提交
5075 5076 5077 5078 5079 5080
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5081 5082 5083 5084 5085 5086 5087 5088 5089
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5090 5091
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

    :param name: layer name
    :type name: basestring
    :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5103
    :type num_classes: int
Y
Yu Yang 已提交
5104 5105
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
5106 5107
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5108
    :param num_neg_samples: number of negative samples. Default is 10.
5109
    :type num_neg_samples: int
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
    :param bias_attr: Bias parameter attribute. True if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5123 5124 5125 5126 5127 5128 5129 5130
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5131
    assert isinstance(input, collections.Sequence)
5132

5133 5134
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5135 5136
    if num_classes is None:
        num_classes = label.size
5137 5138 5139
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5140
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5141 5142
    if not isinstance(act, BaseActivation):
        raise TypeError()
5143

5144 5145
    ipts_for_layer = []
    parents = []
5146
    for each_input, attr in zip(input, param_attr):
5147
        assert isinstance(each_input, LayerOutput)
5148
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5159
    l = Layer(
5160 5161 5162 5163
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5164
        active_type=act.name,
5165 5166 5167
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5168 5169
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5170 5171 5172 5173 5174
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5175

5176

Z
zhangjinchao01 已提交
5177 5178 5179
"""
following are cost Layers.
"""
5180 5181


Z
zhangjinchao01 已提交
5182
@wrap_name_default()
L
luotao1 已提交
5183
@layer_support()
Q
qijun 已提交
5184 5185 5186 5187 5188 5189 5190
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5191
    """
5192
    A cost Layer for learning to rank using gradient descent. Details can refer
5193 5194
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5195 5196 5197 5198 5199
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5200
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5201

L
luotao02 已提交
5202
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5203

L
luotao02 已提交
5204
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5205 5206 5207 5208 5209 5210 5211 5212

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5213
    The example usage is:
Z
zhangjinchao01 已提交
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5234 5235
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5236
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5249 5250 5251 5252 5253 5254
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5255

X
xuwei06 已提交
5256
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5257

5258

Z
zhangjinchao01 已提交
5259
@wrap_name_default()
L
luotao1 已提交
5260
@layer_support()
Q
qijun 已提交
5261 5262 5263 5264 5265 5266
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5267 5268 5269
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5270
    The example usage is:
Z
zhangjinchao01 已提交
5271 5272 5273 5274 5275 5276 5277 5278

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5279
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
                     e.g., 5 for NDCG@5. It must be less than for equal to the
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5291 5292 5293
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5294 5295 5296
    :type max_sort_size: int
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5297 5298
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5299
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5300 5301
    :rtype: LayerOutput
    """
5302 5303 5304
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5305 5306 5307 5308 5309 5310 5311
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5312

Q
qijun 已提交
5313 5314
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5315

5316

Z
zhangjinchao01 已提交
5317
@wrap_name_default()
L
luotao1 已提交
5318
@layer_support()
5319 5320 5321 5322 5323 5324
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5325 5326 5327
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5328 5329
    The example usage is:

Z
zhangjinchao01 已提交
5330 5331
    .. code-block:: python

X
xuwei06 已提交
5332
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5333
                            label=label_layer)
Z
zhangjinchao01 已提交
5334 5335 5336 5337 5338 5339 5340

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
5341 5342
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5343
    :type coeff: float.
5344 5345 5346 5347
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5348 5349
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5350
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5351 5352 5353
    :rtype: LayerOutput.
    """

5354
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5355 5356 5357
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5358
        inputs=ipts,
Q
qijun 已提交
5359 5360
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5361
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5362

5363

Z
zhangjinchao01 已提交
5364
@wrap_name_default()
L
luotao1 已提交
5365
@layer_support()
Q
qijun 已提交
5366 5367 5368 5369
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5370 5371
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5372 5373
    """
    A loss layer for multi class entropy with selfnorm.
5374
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5375

C
caoying03 已提交
5376 5377
    The example usage is:

Z
zhangjinchao01 已提交
5378 5379
    .. code-block:: python

X
xuwei06 已提交
5380
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5381
                                          label=label_layer)
Z
zhangjinchao01 已提交
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5393 5394
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5395
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5396 5397
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5398 5399 5400 5401 5402 5403 5404
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5405

Q
qijun 已提交
5406 5407 5408 5409 5410
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5411

5412

X
xuwei06 已提交
5413 5414 5415 5416 5417 5418
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5419 5420
    The example usage is:

X
xuwei06 已提交
5421 5422
    .. code-block:: python

L
Luo Tao 已提交
5423
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433

    :param input: The first input layer.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5434
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5435 5436 5437 5438 5439
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5440

Q
qijun 已提交
5441
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5442 5443


Z
zhangjinchao01 已提交
5444
@wrap_name_default()
L
luotao1 已提交
5445 5446
@layer_support()
def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
5447 5448 5449
    """
    A loss layer for huber loss.

C
caoying03 已提交
5450 5451
    The example usage is:

Z
zhangjinchao01 已提交
5452 5453
    .. code-block:: python

X
xuwei06 已提交
5454
       cost = huber_cost(input=input_layer,
L
Luo Tao 已提交
5455
                         label=label_layer)
Z
zhangjinchao01 已提交
5456 5457 5458 5459 5460 5461 5462 5463 5464

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5465 5466
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5467
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5468 5469
    :rtype: LayerOutput.
    """
5470 5471 5472
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5473 5474 5475 5476 5477 5478
    Layer(
        name=name,
        type=LayerType.HUBER,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5479
    return LayerOutput(name, LayerType.HUBER, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5480

5481

Z
zhangjinchao01 已提交
5482
@wrap_name_default()
L
luotao1 已提交
5483
@layer_support()
Q
qijun 已提交
5484 5485 5486 5487
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5488
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5489 5490 5491
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5492 5493
    The example usage is:

Z
zhangjinchao01 已提交
5494 5495
    .. code-block:: python

X
xuwei06 已提交
5496
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5497
                                               label=label_layer)
Z
zhangjinchao01 已提交
5498 5499 5500 5501 5502 5503 5504 5505 5506

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5507 5508
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5509
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5510 5511 5512
    :rtype: LayerOutput
    """

5513 5514
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
Q
qijun 已提交
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530
        logger.log(
            logging.WARN,
            "%s is not recommend for multi_binary_label_cross_entropy's activation, "
            "maybe the sigmoid is better" % repr(input.activation))

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
5531 5532 5533 5534


@wrap_name_default()
@layer_support()
5535
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
5536 5537
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
5538
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
5539 5540 5541 5542 5543 5544 5545 5546 5547

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

5548
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
5549

D
dangqingqing 已提交
5550 5551 5552
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
5553 5554
    The example usage is:

D
dangqingqing 已提交
5555 5556
    .. code-block:: python

5557 5558
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
5559 5560 5561 5562 5563 5564 5565

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5566 5567
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
5581
        coeff=coeff,
D
dangqingqing 已提交
5582 5583 5584
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
5604 5605
    The example usage is:

W
wwhu 已提交
5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
5638 5639


5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """
    @TODO(yuyang18): Add comments.

    :param name:
    :param input:
    :param dropout_rate:
    :return:
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
5656 5657


D
dangqingqing 已提交
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
    introduced in paper of `Deep Speech 2: End-toEnd Speech Recognition
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
    efficient manner to improve unidirectional recurrent neural networks.
5680

D
dangqingqing 已提交
5681 5682 5683 5684 5685
    The connection of row convolution is different form the 1D sequence
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
5686

D
dangqingqing 已提交
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


    :param input: The input layer.
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
                       initialized smartly. It's better set it by yourself.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
5730 5731


5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
5751 5752 5753 5754 5755 5756
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

5757 5758 5759 5760 5761
    :param name: Name of this layer.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
5762 5763 5764 5765 5766 5767

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
5768 5769 5770 5771 5772 5773 5774 5775
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer configurations. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

C
caoying03 已提交
5776 5777
    assert isinstance(input, LayerOutput), 'prelu_layer only accepts one input'
    assert isinstance(param_attr, ParameterAttribute)
5778 5779 5780

    l = Layer(
        name=name,
C
caoying03 已提交
5781
        type=LayerType.PRELU,
C
caoying03 已提交
5782
        inputs=Input(input.name, **param_attr.attr),
5783 5784 5785 5786 5787 5788 5789
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)