graph_test.cc 11.2 KB
Newer Older
X
Xin Pan 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
X
Xin Pan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/ir/graph.h"
16

X
Xin Pan 已提交
17
#include "gtest/gtest.h"
18
#include "paddle/fluid/framework/details/multi_devices_helper.h"
X
Xin Pan 已提交
19 20 21 22 23 24 25 26 27
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"

namespace paddle {
namespace framework {

class NOP : public OperatorBase {
 public:
28 29 30 31
  NOP(const std::string &type,
      const VariableNameMap &inputs,
      const VariableNameMap &outputs,
      const AttributeMap &attrs)
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42
      : OperatorBase(type, inputs, outputs, attrs) {}

 private:
  void RunImpl(const Scope &scope,
               const platform::Place &place) const override {}
};

class SumOpMaker : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "").AsDuplicable();
X
Xin Pan 已提交
43
    AddOutput("Out", "").AsDuplicable();
X
Xin Pan 已提交
44 45 46 47 48 49
    AddComment("");
  }
};

class SumOpVarTypeInference : public VarTypeInference {
 public:
M
minqiyang 已提交
50
  void operator()(InferVarTypeContext *ctx) const override {
X
Xin Pan 已提交
51 52
    auto default_var_type = proto::VarType::SELECTED_ROWS;

53
    if (ctx->InputTypeAnyOf("X", proto::VarType::LOD_TENSOR)) {
X
Xin Pan 已提交
54 55 56
      default_var_type = proto::VarType::LOD_TENSOR;
    }

57
    ctx->SetOutputType("Out", default_var_type);
X
Xin Pan 已提交
58 59
  }
};
X
Xin Pan 已提交
60 61 62 63 64 65 66 67 68 69 70 71

class DummyOpMaker : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "").AsDuplicable();
    AddOutput("Out", "").AsDuplicable();
    AddComment("");
  }
};

class DummyOpVarTypeInference : public VarTypeInference {
 public:
M
minqiyang 已提交
72
  void operator()(framework::InferVarTypeContext *ctx) const override {}
X
Xin Pan 已提交
73
};
X
Xin Pan 已提交
74 75 76
}  // namespace framework
}  // namespace paddle

77
REGISTER_OPERATOR(fake_sum,
78 79
                  paddle::framework::NOP,
                  paddle::framework::SumOpMaker,
X
Xin Pan 已提交
80
                  paddle::framework::SumOpVarTypeInference);
81 82 83
REGISTER_OPERATOR(dummy,
                  paddle::framework::NOP,
                  paddle::framework::SumOpMaker,
X
Xin Pan 已提交
84
                  paddle::framework::SumOpVarTypeInference);
85 86
REGISTER_OPERATOR(sum_without_infer_var_type,
                  paddle::framework::NOP,
X
Xin Pan 已提交
87 88 89 90 91 92 93 94
                  paddle::framework::SumOpMaker);

namespace paddle {
namespace framework {

TEST(GraphTest, Basic) {
  ProgramDesc prog;
  auto *op = prog.MutableBlock(0)->AppendOp();
95
  op->SetType("fake_sum");
X
Xin Pan 已提交
96 97
  op->SetInput("X", {"test_a", "test_b", "test_c"});
  op->SetOutput("Out", {"test_out"});
X
Xin Pan 已提交
98
  op->SetAttr("op_role", 1);
X
Xin Pan 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

  prog.MutableBlock(0)->Var("test_a")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_c")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_out");

  op->InferVarType(prog.MutableBlock(0));

  ASSERT_EQ(proto::VarType::SELECTED_ROWS,
            prog.MutableBlock(0)->Var("test_out")->GetType());

  prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarType::LOD_TENSOR);
  op->InferVarType(prog.MutableBlock(0));
  ASSERT_EQ(proto::VarType::LOD_TENSOR,
            prog.MutableBlock(0)->Var("test_out")->GetType());

X
Xin Pan 已提交
115
  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
X
Xin Pan 已提交
116
  std::vector<ir::Node *> nodes(g->Nodes().begin(), g->Nodes().end());
X
Xin Pan 已提交
117
  for (ir::Node *n : nodes) {
118
    if (n->Name() == "fake_sum") {
N
nhzlx 已提交
119 120
      ASSERT_EQ(n->inputs.size(), 3UL);
      ASSERT_EQ(n->outputs.size(), 1UL);
X
Xin Pan 已提交
121 122
    } else if (n->Name() == "test_a" || n->Name() == "test_b" ||
               n->Name() == "test_c") {
N
nhzlx 已提交
123 124
      ASSERT_EQ(n->inputs.size(), 0UL);
      ASSERT_EQ(n->outputs.size(), 1UL);
X
Xin Pan 已提交
125
    } else if (n->Name() == "test_out") {
N
nhzlx 已提交
126 127
      ASSERT_EQ(n->inputs.size(), 1UL);
      ASSERT_EQ(n->outputs.size(), 0UL);
X
Xin Pan 已提交
128 129
    }
  }
130
  ASSERT_EQ(nodes.size(), 5UL);
X
Xin Pan 已提交
131
}
X
Xin Pan 已提交
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
TEST(GraphTest, TestException) {
  ProgramDesc prog;
  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));

  bool not_met_exception = false;
  try {
    g->Erase("no_attr");
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);

  not_met_exception = false;
  try {
    g->CreateVarNode(nullptr);
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);

  not_met_exception = false;
  try {
    g->CreateOpNode(nullptr);
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);

  not_met_exception = false;
  try {
    g->RemoveNode(nullptr);
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);

  not_met_exception = false;
  try {
    g->AddNode(nullptr);
    g->AddNode(nullptr);
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);
}
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

TEST(GraphTest, TestAttrCopy) {
  ProgramDesc prog;
  ir::Graph src_g(prog);
  ir::Graph dst_g(prog);
  const std::string kIntValue = "int_value";
  const std::string kFloatValue = "float_value";
  const int INT_VALUE = 3;
  src_g.Set<int>(kIntValue, new int(INT_VALUE));
  details::CopyGraphAttrIfExists<int>(src_g, &dst_g, kIntValue);
  details::CopyGraphAttrIfExists<float>(src_g, &dst_g, kFloatValue);

  ASSERT_TRUE(dst_g.Has(kIntValue));
  ASSERT_EQ(dst_g.Get<int>(kIntValue), INT_VALUE);
  ASSERT_FALSE(dst_g.Has(kFloatValue));
}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
TEST(GraphTest, TestInterfaceConvertAllBlocks) {
  // Set FLAGS_convert_all_blocks to true to make sure this test works.
  bool flag_temp = FLAGS_convert_all_blocks;
  FLAGS_convert_all_blocks = true;

  ProgramDesc prog;
  prog.MutableBlock(0)->Var("init_var")->SetType(proto::VarType::SELECTED_ROWS);
  ir::Graph g(prog);
  ASSERT_TRUE(g.IsMainGraph());

  const std::string kIntValue = "int_value";
  const int INT_VALUE = 3;
  g.Set<int>(kIntValue, new int(INT_VALUE));
  ASSERT_TRUE(g.Has(kIntValue));
  ASSERT_EQ(g.GetOrInit<int>(kIntValue), INT_VALUE);
  ASSERT_EQ(g.Get<int>(kIntValue), INT_VALUE);
  g.Erase(kIntValue);
  ASSERT_TRUE(!g.Has(kIntValue));
  g.SetNotOwned<int>(kIntValue, new int(INT_VALUE));
  ASSERT_TRUE(g.Has(kIntValue));
  g.Erase(kIntValue);

  g.ReleaseNodes();
  ASSERT_EQ(g.Nodes().size(), 0UL);
  g.CreateVarNode(new VarDesc("temp_var_desc_name"));
  g.CreateOpNode(prog.MutableBlock(0)->AppendOp());
  g.CreateControlDepVar();
  g.CreateEmptyNode("temp_empty_node_name", ir::Node::Type::kVariable);
  ASSERT_EQ(g.Nodes().size(), 4UL);
  g.RemoveNode(g.RetrieveNode(1));
  ASSERT_EQ(g.Nodes().size(), 3UL);

  // Recover FLAGS_convert_all_blocks.
  FLAGS_convert_all_blocks = flag_temp;
}

TEST(GraphTest, TestMultiBlock) {
  // Set FLAGS_convert_all_blocks to true to make sure this test works.
  bool flag_temp = FLAGS_convert_all_blocks;
  FLAGS_convert_all_blocks = true;

  // Step1: Build a program with 3 blocks.
  ProgramDesc prog;
  ASSERT_EQ(prog.Size(), 1UL);
  prog.AppendBlock(prog.Block(0));
  prog.AppendBlock(prog.Block(0));
  ASSERT_EQ(prog.Size(), 3UL);

  // Set contents in block_0.
  auto *op = prog.MutableBlock(0)->AppendOp();
245
  op->SetType("fake_sum");
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
  op->SetInput("X", {"test_a", "test_b", "test_c"});
  op->SetOutput("Out", {"test_out"});
  op->SetAttr("op_role", 1);

  prog.MutableBlock(0)->Var("test_a")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_c")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_out");
  op->InferVarType(prog.MutableBlock(0));
  ASSERT_EQ(proto::VarType::SELECTED_ROWS,
            prog.MutableBlock(0)->Var("test_out")->GetType());

  prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarType::LOD_TENSOR);
  op->InferVarType(prog.MutableBlock(0));
  ASSERT_EQ(proto::VarType::LOD_TENSOR,
            prog.MutableBlock(0)->Var("test_out")->GetType());

  // Set contents in block_1.
  op = prog.MutableBlock(1)->AppendOp();
265
  op->SetType("fake_sum");
266 267 268 269 270 271 272
  op->SetInput("X", {"a"});
  op->SetOutput("Out", {"b"});
  op->SetAttr("op_role", 1);

  op = prog.MutableBlock(1)->AppendOp();
  op->SetType("dummy");
  op->SetInput("X", {"c"});
273
  op->SetOutput("Out", {"d"});
274 275 276 277 278
  op->SetAttr("op_role", 1);

  prog.MutableBlock(1)->Var("a")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(1)->Var("b")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(1)->Var("c")->SetType(proto::VarType::LOD_TENSOR);
279
  prog.MutableBlock(1)->Var("d")->SetType(proto::VarType::LOD_TENSOR);
280 281 282

  // Set contents in block_2.
  op = prog.MutableBlock(2)->AppendOp();
283
  op->SetType("fake_sum");
284 285 286 287 288 289 290
  op->SetInput("X", {"a"});
  op->SetOutput("Out", {"b"});
  op->SetAttr("op_role", 1);

  op = prog.MutableBlock(2)->AppendOp();
  op->SetType("dummy");
  op->SetInput("X", {"c"});
291
  op->SetOutput("Out", {"d"});
292 293 294 295 296
  op->SetAttr("op_role", 1);

  prog.MutableBlock(2)->Var("a")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(2)->Var("b")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(2)->Var("c")->SetType(proto::VarType::LOD_TENSOR);
297
  prog.MutableBlock(1)->Var("d")->SetType(proto::VarType::LOD_TENSOR);
298 299 300 301 302 303 304 305 306 307

  // Step2: Convert program into graph, 3 blocks corresponding 3 sub_graphs.
  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
  ASSERT_EQ(g->IsMainGraph(), true);
  ASSERT_EQ(g->SubGraphsSize(), 3UL);

  // Check contents in sub_graph_0.
  const ir::Graph *g0 = g->GetSubGraph(0);
  std::vector<ir::Node *> nodes(g0->Nodes().begin(), g0->Nodes().end());
  for (ir::Node *n : nodes) {
308
    if (n->Name() == "fake_sum") {
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
      ASSERT_EQ(n->inputs.size(), 3UL);
      ASSERT_EQ(n->outputs.size(), 1UL);
    } else if (n->Name() == "test_a" || n->Name() == "test_b" ||
               n->Name() == "test_c") {
      ASSERT_EQ(n->inputs.size(), 0UL);
      ASSERT_EQ(n->outputs.size(), 1UL);
    } else if (n->Name() == "test_out") {
      ASSERT_EQ(n->inputs.size(), 1UL);
      ASSERT_EQ(n->outputs.size(), 0UL);
    }
  }
  ASSERT_EQ(nodes.size(), 5UL);

  // Check contents in sub_graph_1.
  const ir::Graph *g1 = g->GetSubGraph(1);
  for (ir::Node *n : g1->Nodes()) {
325
    if (n->Name() == "fake_sum") {
326
      ASSERT_EQ(n->outputs[0]->Name(), "b");
327
      ASSERT_EQ(n->outputs.size(), 1UL);
328 329 330
    }
    if (n->Name() == "dummy") {
      ASSERT_EQ(n->inputs[0]->Name(), "c");
331
      ASSERT_EQ(n->inputs.size(), 1UL);
332 333 334 335 336 337
    }
  }

  // Check contents in sub_graph_2.
  const ir::Graph *g2 = g->GetSubGraph(2);
  for (ir::Node *n : g2->Nodes()) {
338
    if (n->Name() == "fake_sum") {
339
      ASSERT_EQ(n->outputs[0]->Name(), "b");
340
      ASSERT_EQ(n->outputs.size(), 1UL);
341 342 343
    }
    if (n->Name() == "dummy") {
      ASSERT_EQ(n->inputs[0]->Name(), "c");
344
      ASSERT_EQ(n->inputs.size(), 1UL);
345 346 347 348 349 350 351 352 353 354 355 356
    }
  }

  // Step3: Clone graph.
  std::shared_ptr<ir::Graph> clone_g = g->Clone();
  ASSERT_EQ(clone_g->IsMainGraph(), true);
  ASSERT_EQ(clone_g->SubGraphsSize(), 3UL);

  // Recover FLAGS_convert_all_blocks.
  FLAGS_convert_all_blocks = flag_temp;
}

X
Xin Pan 已提交
357 358
}  // namespace framework
}  // namespace paddle