graph_test.cc 8.4 KB
Newer Older
X
Xin Pan 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
X
Xin Pan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/ir/graph.h"
#include "gtest/gtest.h"
17
#include "paddle/fluid/framework/details/multi_devices_helper.h"
X
Xin Pan 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"

namespace paddle {
namespace framework {

class NOP : public OperatorBase {
 public:
  NOP(const std::string &type, const VariableNameMap &inputs,
      const VariableNameMap &outputs, const AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

 private:
  void RunImpl(const Scope &scope,
               const platform::Place &place) const override {}
};

class SumOpMaker : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "").AsDuplicable();
X
Xin Pan 已提交
40
    AddOutput("Out", "").AsDuplicable();
X
Xin Pan 已提交
41 42 43 44 45 46
    AddComment("");
  }
};

class SumOpVarTypeInference : public VarTypeInference {
 public:
M
minqiyang 已提交
47 48
  void operator()(InferVarTypeContext *ctx) const override {
    auto &inputs = ctx->Input("X");
X
Xin Pan 已提交
49 50 51
    auto default_var_type = proto::VarType::SELECTED_ROWS;

    bool any_input_is_lod_tensor = std::any_of(
M
minqiyang 已提交
52
        inputs.begin(), inputs.end(), [&ctx](const std::string &name) {
M
minqiyang 已提交
53
          return ctx->GetType(name) == proto::VarType::LOD_TENSOR;
X
Xin Pan 已提交
54 55 56 57 58
        });
    if (any_input_is_lod_tensor) {
      default_var_type = proto::VarType::LOD_TENSOR;
    }

M
minqiyang 已提交
59 60
    auto out_var_name = ctx->Output("Out").front();
    ctx->SetType(out_var_name, default_var_type);
X
Xin Pan 已提交
61 62
  }
};
X
Xin Pan 已提交
63 64 65 66 67 68 69 70 71 72 73 74

class DummyOpMaker : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "").AsDuplicable();
    AddOutput("Out", "").AsDuplicable();
    AddComment("");
  }
};

class DummyOpVarTypeInference : public VarTypeInference {
 public:
M
minqiyang 已提交
75
  void operator()(framework::InferVarTypeContext *ctx) const override {}
X
Xin Pan 已提交
76
};
X
Xin Pan 已提交
77 78 79 80 81
}  // namespace framework
}  // namespace paddle

REGISTER_OPERATOR(sum, paddle::framework::NOP, paddle::framework::SumOpMaker,
                  paddle::framework::SumOpVarTypeInference);
X
Xin Pan 已提交
82 83
REGISTER_OPERATOR(dummy, paddle::framework::NOP, paddle::framework::SumOpMaker,
                  paddle::framework::SumOpVarTypeInference);
X
Xin Pan 已提交
84 85 86 87 88 89 90 91 92 93 94 95
REGISTER_OPERATOR(sum_without_infer_var_type, paddle::framework::NOP,
                  paddle::framework::SumOpMaker);

namespace paddle {
namespace framework {

TEST(GraphTest, Basic) {
  ProgramDesc prog;
  auto *op = prog.MutableBlock(0)->AppendOp();
  op->SetType("sum");
  op->SetInput("X", {"test_a", "test_b", "test_c"});
  op->SetOutput("Out", {"test_out"});
X
Xin Pan 已提交
96
  op->SetAttr("op_role", 1);
X
Xin Pan 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

  prog.MutableBlock(0)->Var("test_a")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_c")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_out");

  op->InferVarType(prog.MutableBlock(0));

  ASSERT_EQ(proto::VarType::SELECTED_ROWS,
            prog.MutableBlock(0)->Var("test_out")->GetType());

  prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarType::LOD_TENSOR);
  op->InferVarType(prog.MutableBlock(0));
  ASSERT_EQ(proto::VarType::LOD_TENSOR,
            prog.MutableBlock(0)->Var("test_out")->GetType());

X
Xin Pan 已提交
113
  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
X
Xin Pan 已提交
114
  std::vector<ir::Node *> nodes(g->Nodes().begin(), g->Nodes().end());
X
Xin Pan 已提交
115 116
  for (ir::Node *n : nodes) {
    if (n->Name() == "sum") {
N
nhzlx 已提交
117 118
      ASSERT_EQ(n->inputs.size(), 3UL);
      ASSERT_EQ(n->outputs.size(), 1UL);
X
Xin Pan 已提交
119 120
    } else if (n->Name() == "test_a" || n->Name() == "test_b" ||
               n->Name() == "test_c") {
N
nhzlx 已提交
121 122
      ASSERT_EQ(n->inputs.size(), 0UL);
      ASSERT_EQ(n->outputs.size(), 1UL);
X
Xin Pan 已提交
123
    } else if (n->Name() == "test_out") {
N
nhzlx 已提交
124 125
      ASSERT_EQ(n->inputs.size(), 1UL);
      ASSERT_EQ(n->outputs.size(), 0UL);
X
Xin Pan 已提交
126 127
    }
  }
128
  ASSERT_EQ(nodes.size(), 5UL);
X
Xin Pan 已提交
129
}
X
Xin Pan 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

TEST(GraphTest, WriteAfterRead) {
  // void Test() {
  ProgramDesc prog;
  auto *op = prog.MutableBlock(0)->AppendOp();
  op->SetType("sum");
  op->SetInput("X", {"a"});
  op->SetOutput("Out", {"b"});
  op->SetAttr("op_role", 1);

  op = prog.MutableBlock(0)->AppendOp();
  op->SetType("dummy");
  op->SetInput("X", {"c"});
  op->SetOutput("Out", {"a"});
  op->SetAttr("op_role", 1);

  prog.MutableBlock(0)->Var("a")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("b")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("c")->SetType(proto::VarType::LOD_TENSOR);

  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
  ir::Node *control_dep1 = nullptr;
  ir::Node *control_dep2 = nullptr;
  for (ir::Node *n : g->Nodes()) {
    if (n->Name() == "sum") {
      ASSERT_EQ(n->outputs[0]->Name(), "b");
      ASSERT_TRUE(ir::IsControlDepVar(*n->outputs[1]));
      control_dep1 = n->outputs[1];
158
      ASSERT_EQ(n->outputs.size(), 2UL);
X
Xin Pan 已提交
159 160 161 162 163
    }
    if (n->Name() == "dummy") {
      ASSERT_EQ(n->inputs[0]->Name(), "c");
      ASSERT_TRUE(ir::IsControlDepVar(*n->inputs[1]));
      control_dep2 = n->inputs[1];
164
      ASSERT_EQ(n->inputs.size(), 2UL);
X
Xin Pan 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    }
  }
  ASSERT_EQ(control_dep1, control_dep2);
}

TEST(GraphTest, WriteAfterWrite) {
  // void Test() {
  ProgramDesc prog;
  auto *op = prog.MutableBlock(0)->AppendOp();
  op->SetType("sum");
  op->SetInput("X", {"a"});
  op->SetOutput("Out", {"b"});
  op->SetAttr("op_role", 1);

  op = prog.MutableBlock(0)->AppendOp();
  op->SetType("dummy");
  op->SetInput("X", {"c"});
  op->SetOutput("Out", {"b"});
  op->SetAttr("op_role", 1);

  prog.MutableBlock(0)->Var("a")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("b")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("c")->SetType(proto::VarType::LOD_TENSOR);

  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
  ir::Node *control_dep1 = nullptr;
  ir::Node *control_dep2 = nullptr;
  for (ir::Node *n : g->Nodes()) {
    if (n->Name() == "sum") {
      ASSERT_EQ(n->outputs[0]->Name(), "b");
      ASSERT_TRUE(ir::IsControlDepVar(*n->outputs[1]));
196
      ASSERT_EQ(n->outputs.size(), 2UL);
X
Xin Pan 已提交
197 198 199 200 201 202
      control_dep1 = n->outputs[1];
    }
    if (n->Name() == "dummy") {
      ASSERT_EQ(n->inputs[0]->Name(), "c");
      ASSERT_TRUE(ir::IsControlDepVar(*n->inputs[1]));
      control_dep2 = n->inputs[1];
203
      ASSERT_EQ(n->inputs.size(), 2UL);
X
Xin Pan 已提交
204 205
    }
  }
M
minqiyang 已提交
206 207 208
  ASSERT_NE(control_dep1, nullptr);
  ASSERT_NE(control_dep2, nullptr);
  ASSERT_EQ(control_dep1, control_dep2);
X
Xin Pan 已提交
209
}
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

TEST(GraphTest, TestException) {
  ProgramDesc prog;
  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));

  bool not_met_exception = false;
  try {
    g->Erase("no_attr");
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);

  not_met_exception = false;
  try {
    g->CreateVarNode(nullptr);
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);

  not_met_exception = false;
  try {
    g->CreateOpNode(nullptr);
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);

  not_met_exception = false;
  try {
    g->RemoveNode(nullptr);
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);

  not_met_exception = false;
  try {
    g->AddNode(nullptr);
    g->AddNode(nullptr);
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);
}
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

TEST(GraphTest, TestAttrCopy) {
  ProgramDesc prog;
  ir::Graph src_g(prog);
  ir::Graph dst_g(prog);
  const std::string kIntValue = "int_value";
  const std::string kFloatValue = "float_value";
  const int INT_VALUE = 3;
  src_g.Set<int>(kIntValue, new int(INT_VALUE));
  details::CopyGraphAttrIfExists<int>(src_g, &dst_g, kIntValue);
  details::CopyGraphAttrIfExists<float>(src_g, &dst_g, kFloatValue);

  ASSERT_TRUE(dst_g.Has(kIntValue));
  ASSERT_EQ(dst_g.Get<int>(kIntValue), INT_VALUE);
  ASSERT_FALSE(dst_g.Has(kFloatValue));
}

X
Xin Pan 已提交
273 274
}  // namespace framework
}  // namespace paddle